平面,從而面面,----6分 查看更多

 

題目列表(包括答案和解析)

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.

(Ⅰ)求證:點為棱的中點;

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,

易知,。由此知:從而有又點的中點,所以,所以點為棱的中點.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。

(1)過點點,取的中點,連。且相交于,面內(nèi)的直線,。……3分

且相交于,且為等腰三角形,易知。由此知:,從而有共面,又易知,故有從而有又點的中點,所以,所以點為棱的中點.               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,…,依此類推.一個半徑適當?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球?qū)⒆杂上侣,已知小球每次遇到正方形障礙物上頂點時,向左、右兩邊下落的概率都是.記小球遇到第n行第m個障礙物(從左至右)上頂點的概率為P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表達式(不必證明);
(Ⅱ)已知f(x)=,設小球遇到第6行第m個障礙物(從左至右)上頂點時,得到的分數(shù)為ξ=f(m),試求ξ的分布列及數(shù)學期望.

查看答案和解析>>

如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,…,依此類推.一個半徑適當?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球?qū)⒆杂上侣,已知小球每次遇到正方形障礙物上頂點時,向左、右兩邊下落的概率都是.記小球遇到第n行第m個障礙物(從左至右)上頂點的概率為P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表達式(不必證明);
(Ⅱ)已知f(x)=,設小球遇到第6行第m個障礙物(從左至右)上頂點時,得到的分數(shù)為ξ=f(m),試求ξ的分布列及數(shù)學期望.

查看答案和解析>>

(2011•丹東模擬)如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,…,依此類推.一個半徑適當?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球?qū)⒆杂上侣洌阎∏蛎看斡龅秸叫握系K物上頂點時,向左、右兩邊下落的概率都是
1
2
.記小球遇到第n行第m個障礙物(從左至右)上頂點的概率為P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表達式(不必證明);
(Ⅱ)已知f(x)=
4-x,1≤x≤3
x-3,3<x≤6
,設小球遇到第6行第m個障礙物(從左至右)上頂點時,得到的分數(shù)為ξ=f(m),試求ξ的分布列及數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,……,依次類推.一個半徑適當?shù)墓饣鶆蛐∏驈娜肟?i>A投入滑道,小球?qū)⒆杂上侣洌阎∏蛎看斡龅秸叫握系K物上頂點時,向左、右兩邊下落的概率都是.記小球遇到第行第個障礙物(從左至右)上頂點的概率為
(Ⅰ)求,的值,并猜想的表達式(不必證明);
(Ⅱ)已知,設小球遇到第6行第個障礙物(從左至右)上頂點時,
得到的分數(shù)為,試求的分布列及數(shù)學期望.

查看答案和解析>>


同步練習冊答案