題目列表(包括答案和解析)
在遞增等差數(shù)列(
)中,已知
,
是
和
的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前
項(xiàng)和為
,求使
時
的最小值.
【解析】本試題主要考查了數(shù)列通項(xiàng)公式的求解以及前n項(xiàng)和公式的運(yùn)用。并求解最值。
有四個數(shù):前三個成等差數(shù)列,后三個成等比數(shù)列。首末兩數(shù)和為16,中間兩數(shù)和為12。求這四個數(shù)。
【解析】本試題主要是考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式的運(yùn)用。
在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足
,求{cn}的前n項(xiàng)和Tn.
【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得
,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1. 第二問中,
,由第一問中知道
,然后利用裂項(xiàng)求和得到Tn.
解: (Ⅰ) 設(shè):{an}的公差為d,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分
已知遞增等差數(shù)列滿足:
,且
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式
;
(2)若不等式對任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為
,
由題意可知,即
,解得d,得到通項(xiàng)公式,第二問中,不等式等價于
,利用當(dāng)
時,
;當(dāng)
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當(dāng)時,
;當(dāng)
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時,
,成立.
假設(shè)當(dāng)時,不等式
成立,
當(dāng)時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式
, …………10分
, …………12分
所以對,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而,所以
恒成立,
故的最小值為
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com