已知.且{f數(shù)列.則求可用累加法. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知函數(shù)f(x)=
x2
x+m
的圖象經(jīng)過(guò)點(diǎn)(4,8).
(1)求該函數(shù)的解析式;
(2)數(shù)列{an}中,若a1=1,Sn為數(shù)列{an}的前n項(xiàng)和,且滿足an=f(Sn)(n≥2),
證明數(shù)列{
1
Sn
}
成等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)另有一新數(shù)列{bn},若將數(shù)列{bn}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:記表中的第一列數(shù)b1,b2,b4,b7,…,構(gòu)成的數(shù)列即為數(shù)列{an},上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)b81=-
4
91
時(shí),求上表中第k(k≥3)行所有項(xiàng)的和.

查看答案和解析>>

給出下列命題:

①過(guò)一點(diǎn)與已知曲線相切的直線有且只有一條.

②函數(shù)f(x)=對(duì)稱(chēng)中心是(-);

③已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,若S7>S5,則S9>S3;

④函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;

⑤已知a,b,m均是正數(shù),且a<b,則

⑥若四個(gè)數(shù)成等比數(shù)列求這四個(gè)數(shù),則這四個(gè)數(shù)可設(shè)為

其中真命題的序號(hào)是________(將所有真命題的序號(hào)都填上)

查看答案和解析>>

給出下列命題:

①過(guò)一點(diǎn)與已知曲線相切的直線有且只有一條.

②函數(shù)f(x)=對(duì)稱(chēng)中心是(-);

③已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,若S7>S5,則S9>S3

④函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;

⑤已知a,b,m均是正數(shù),且a<b,則

⑥若四個(gè)數(shù)成等比數(shù)列求這四個(gè)數(shù),則這四個(gè)數(shù)可設(shè)為

其中真命題的序號(hào)是________(將所有真命題的序號(hào)都填上)

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式的圖象經(jīng)過(guò)點(diǎn)(4,8).
(1)求該函數(shù)的解析式;
(2)數(shù)列{an}中,若a1=1,Sn為數(shù)列{an}的前n項(xiàng)和,且滿足an=f(Sn)(n≥2),
證明數(shù)列數(shù)學(xué)公式成等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)另有一新數(shù)列{bn},若將數(shù)列{bn}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
記表中的第一列數(shù)b1,b2,b4,b7,…,構(gòu)成的數(shù)列即為數(shù)列{an},上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)數(shù)學(xué)公式時(shí),求上表中第k(k≥3)行所有項(xiàng)的和.

查看答案和解析>>

已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,8).
(1)求該函數(shù)的解析式;
(2)數(shù)列{an}中,若a1=1,Sn為數(shù)列{an}的前n項(xiàng)和,且滿足an=f(Sn)(n≥2),
證明數(shù)列成等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)另有一新數(shù)列{bn},若將數(shù)列{bn}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:記表中的第一列數(shù)b1,b2,b4,b7,…,構(gòu)成的數(shù)列即為數(shù)列{an},上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)時(shí),求上表中第k(k≥3)行所有項(xiàng)的和.

查看答案和解析>>


同步練習(xí)冊(cè)答案