7.有一個圓心角為.半徑為12厘米的扇形紙片.用它恰好圍成一個圓錐的側(cè)面.則該圓錐底面圓的半徑為 厘米. [命題意圖]本題考查圓錐的側(cè)面展開圖以及扇形的弧長公式. 試題的特色和亮點:學生要自已在草稿紙上畫出圖形.知道圓錐的側(cè)面展開.經(jīng)歷從空間到平面的思維過度. 試題測試后的講評意見:在評講試卷時.可體到形的變化.讓學生知道圓錐的底面周長等于展開后扇形的弧長. [參考答案]4. [試題來源]自編 查看更多

 

題目列表(包括答案和解析)

已知Rt△ABC中,,,有一個圓心角為,半徑的長等于的扇形繞點C旋轉(zhuǎn),且直線CECF分別與直線交于點M,N

(Ⅰ)當扇形繞點C的內(nèi)部旋轉(zhuǎn)時,如圖①,求證:;

思路點撥:考慮符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△沿直線對折,得△,連,只需證,就可以了.

請你完成證明過程:

(Ⅱ)當扇形CEF繞點C旋轉(zhuǎn)至圖②的位置時,關(guān)系式是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑長等于CA的扇形CEF繞點C旋轉(zhuǎn),直線CE、CF分別與直線AB交于點M、N.
(1)如圖①,當AM=BN時,將△ACM沿CM折疊,點A落在弧EF的中點P處,再將△BCN沿CN折疊,點B也恰好落在點P處,此時,PM=AM,PN=BN,△PMN的形狀是
 
.線段AM、BN、MN之間的數(shù)量關(guān)系是
 
;
(2)如圖②,當扇形CEF繞點C在∠ACB內(nèi)部旋轉(zhuǎn)時,線段MN、AM、BN之間的數(shù)量關(guān)系是
 
.試證明你的猜想;
(3)當扇形CEF繞點C旋轉(zhuǎn)至圖③的位置時,線段MN、AM、BN之間的數(shù)量關(guān)系是
 
.(不要求證明)
精英家教網(wǎng)

查看答案和解析>>

25、已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N.
(Ⅰ)當扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖1,求證:MN2=AM2+BN2;
(思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請你完成證明過程.)
(Ⅱ)當扇形CEF繞點C旋轉(zhuǎn)至圖2的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

(2013•橋西區(qū)模擬)已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N.
(1)當扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖①,求證:MN2=AM2+BN2;
思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.
請你完成證明過程:
(2)當扇形CEF繞點C旋轉(zhuǎn)至圖②的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N.
(Ⅰ)當扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖1,求證:MN2=AM2+BN2;
(思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請你完成證明過程.)
(Ⅱ)當扇形CEF繞點C旋轉(zhuǎn)至圖2的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>


同步練習冊答案