題目列表(包括答案和解析)
設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
(08年杭州市質(zhì)檢二)(14分)如圖,在橢圓中,點(diǎn)是左焦點(diǎn), ,分別為右頂點(diǎn)和上頂點(diǎn),點(diǎn)為橢圓的中心。又點(diǎn)在橢圓上,且滿足條件:,點(diǎn)是點(diǎn)在x軸上的射影。
(1)求證:當(dāng)取定值時(shí),點(diǎn)必為定點(diǎn);
(2)如果點(diǎn)落在左頂點(diǎn)與左焦點(diǎn)之間,試求橢圓離心率的取值范圍;
(3)如果以為直徑的圓與直線相切,且凸四邊形的面積等于,求橢圓的方程。
已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是(0,),(0,),又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.
2.A解析:由知函數(shù)在上有零點(diǎn),又因?yàn)楹瘮?shù)在(0,+)上是減函數(shù),所以函數(shù)y=f(x) 在(0,+)上有且只有一個(gè)零點(diǎn)不妨設(shè)為,則,又因?yàn)楹瘮?shù)是偶函數(shù),所以=0并且函數(shù)在(0,+)上是減函數(shù),因此-是(-,0)上的唯一零點(diǎn),所以函數(shù)共有兩個(gè)零點(diǎn)
下列敘述中,是隨機(jī)變量的有( )
①某工廠加工的零件,實(shí)際尺寸與規(guī)定尺寸之差;②標(biāo)準(zhǔn)狀態(tài)下,水沸騰的溫度;③某大橋一天經(jīng)過(guò)的車輛數(shù);④向平面上投擲一點(diǎn),此點(diǎn)坐標(biāo).
A.②③ B.①② C.①③④ 。模佗
(09年?yáng)|城區(qū)期末理)(13分)
已知橢圓的對(duì)稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),又點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com