若pq,qp,則是的充分非必要條件, 若pq,qp,則是的必要非充分條件, 若pq,則是的充要條件, 若pq,qp,則是的既非充分又非必要條件, 查看更多

 

題目列表(包括答案和解析)

設⊙O為不等邊△ABC的外接圓,△ABC內角A,B,C所對邊的長分別為a,b,c,P是△ABC所在平面內的一點,且滿足
PA
PB
=
c
b
PA
PC
+
b-c
b
PA2
(P與A不重合).Q為△ABC所在平面外一點,QA=QB=QC.有下列命題:
①若QA=QP,∠BAC=90°,則點Q在平面ABC上的射影恰在直線AP上;
②若QA=QP,則
QP
PB
=
QP
PC
;
③若QA>QP,∠BAC=90°,則
BP
CP
=
AB
AC
;
④若QA>QP,則P在△ABC內部的概率為
S△ABC
S⊙O
(S△ABC,S⊙O分別表示△ABC與⊙O的面積).
其中不正確的命題有
 
(寫出所有不正確命題的序號).

查看答案和解析>>

設過雙曲線x2-y2=9左焦點F1的直線交雙曲線的左支于點P,Q,F(xiàn)2為雙曲線的右焦點.若PQ=7,則△F2PQ的周長為( 。

查看答案和解析>>

選做題:考生在下面兩小題中,任選一道作答,如果全做則按第1小題評分.
(1)《幾何證明選講》選做題
如圖,半徑分別為a和3a的圓O1與圓O2外切于T,自圓O2上一點P引圓O1的切線,切點為Q,若PQ=2a,則PT=
2
6
3
a
2
6
3
a

(2)《坐標系與參數方程》選做題
從極點O作射線交直線ρcosθ=3于點M,P為線段OM上的點,且|OM|•|OP|=12,則P點軌跡的極坐標方程為
p=4cosθ
p=4cosθ

查看答案和解析>>

(2012•揚州模擬)已知A(2,1),⊙O:x2+y2=1,由直線l:x-y+3=0上一點P向⊙O引切線PQ,切點為Q,若PQ=PA,則P點坐標是
(0,3)
(0,3)

查看答案和解析>>

設A(-2,0),B(2,0),M為平面上任一點,若|MA|+|MB|為定值,且cosAMB的最小值為-
13

(1)求M點軌跡C的方程;
(2)過點N(3,0)的直線l與軌跡C及單位圓x2+y2=1自右向左依次交于點P、Q、R、S,若|PQ|=|RS|,則這樣的直線l共有幾條?請證明你的結論.

查看答案和解析>>


同步練習冊答案