題目列表(包括答案和解析)
繼薩凱里之后,大概又過了半個世紀.歐洲“數(shù)學之王”高斯的至友匈牙利數(shù)學家伏爾夫剛·鮑里埃,終身從事證明“第五公設”的研究,由于心血耗盡,毫無成效,便懷著沉重的心情,給那酷愛數(shù)學的兒子亞諾什·鮑耶(1802~1860)寫信,希望小鮑耶“不要再做克服平行公理的嘗試”.他忠告兒子說:“投身于這一貪得無度地吞人們的智慧、精力和心血的無底洞,白花時間在上面,一輩子也證不出這個命題來.”他滿腹心酸地寫到:“我經(jīng)過了這個毫無希望的夜的黑暗,我在這里面埋沒了人生的一切亮光、一切歡樂和一切希望.”最后告誡自己心愛的兒子說:“若再癡戀這一無止無休的勞作,必然會剝奪你生活的一切時間、健康、休息和幸福!”但是,年僅21歲的小鮑耶卻是敢向“無底洞”覓求真知的探索者.他認真吸取前人失敗的教訓,初出茅廬就大顯身手.小鮑耶匠心獨運,大膽創(chuàng)新,決然將“第五公設”換成他自身的否定.從“三角形三個內(nèi)角和小于180°”這一令人瞠目結舌的假設出發(fā),建立起一套完整協(xié)調(diào)、天衣無縫的新幾何體系.小鮑耶滿懷激情地將自己的科學創(chuàng)見向父親報捷.老伏爾夫剛以之見教于至友高斯,不久,高斯復信鮑里埃,信中寫到:“如果我一開始便說我不能稱贊這樣的成果,你一定會感到驚訝.但是,我不能不這樣說,因為稱贊這些成果就等于稱贊我自己.令郎的這些工作,他走過的路,以及所獲得的成果,跟我過去30年至35年前的所思所得幾乎一模一樣.”高斯在回信結尾還開誠布公地提到:“我自己的著作,盡管寫好的只是一部分,我本來也想發(fā)表,因為我怕引某些人的喊聲,現(xiàn)在,有了朋友的兒子能夠這樣寫下來,免得他與我一樣湮沒,那是使我非常高興的.”這位當代數(shù)學大師恐怕做夢也沒想到,他這封推心置腹的信,竟會一舉撞毀初露鋒芒的數(shù)壇新星!
高斯的復信給小鮑耶帶來意想不到的毀滅性打擊.躊躇滿志的鮑耶誤認為高斯動用自己擁有的崇高權威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權.為此,他痛心疾首,認為自己心血澆灌出來的成果和嘔心瀝血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學研究.
1.對于“數(shù)學之王”高斯給鮑耶的回信,你有什么看法呢?如果你是高斯,你該怎樣回信?
2.躊躇滿志的鮑耶誤認為“高斯動用自己擁有的崇高權威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權”,進而“郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學研究”.你又有何看法呢?假如你是鮑耶,你又該怎么做呢?
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在,有?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.
【解析】第一問中,由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)中當時,則
即,其中是大于等于的整數(shù)
反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)中設當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
結合二項式定理得到結論。
解(1)由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)當時,則即,其中是大于等于的整數(shù)反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)設當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
由,得
當為奇數(shù)時,此時,一定有和使上式一定成立。當為奇數(shù)時,命題都成立
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com