A. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點(diǎn)的個(gè)數(shù)為:
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)
函數(shù)f(x)=x2-x-a2+a+1對(duì)于任一實(shí)數(shù)x,均有f(x)≥0.則實(shí)數(shù)a滿足的條件是
 

B.(幾何證明選做題)
如圖,圓O是△ABC的外接圓,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
3
,AB=BC=4,則AC的長(zhǎng)為
 

C.(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,曲線ρ=4cos(θ-
π
3
)
上任意兩點(diǎn)間的距離的最大值為
 

查看答案和解析>>

精英家教網(wǎng)A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn),過P作⊙O的切線,切點(diǎn)為CPC=2
3
,若∠CAP=30°,則⊙O的直徑AB=
 

C.(極坐標(biāo)系與參數(shù)方程選做題)若圓C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ為參數(shù))
與直線x-y+m=0相切,則m=
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
 


B.(幾何證明選做題)如圖,直線PC與圓O相切于點(diǎn)C,割線PAB經(jīng)過圓心O,
弦CD⊥AB于點(diǎn)E,PC=4,PB=8,則CE=
 

C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
π
4
)=2
2
的距離為
 

查看答案和解析>>

一.選擇題:CDDA  DDBA  BBDC .

二.填空題:(13)60,(14),(15),(16)①②④ .

三.解答題:

(17)解:(Ⅰ)∵

.                 ………3分

∴令,        ………4分

的遞減區(qū)間是,;              ………5分

,           ………6分

的遞增區(qū)間是.              ………7分

(Ⅱ)∵,∴,                     ………8分

      又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線

可得.                                     ………10分

(18)解:由題意,                                       ………1分

,                                        ………2分

,                              ………4分

,                            ………6分

,                      ………8分

 

 

文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

 

 

 

………9分

.          ………12分

(19)解:(Ⅰ)由題設(shè)可知,.                    ………1分

,,

,                                 ………3分

,              ………5分

.                                             ………6分

(Ⅱ)設(shè).                        ………7分

顯然,時(shí),,                                       ………8分

, ∴當(dāng)時(shí),,∴,                       

當(dāng)時(shí),,∴,                             ………9分

當(dāng)時(shí),,∴,                        ………10分

當(dāng)時(shí),恒成立,

恒成立,                               ………11分

∴存在,使得.                                 ………12分

(20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

設(shè)AB=1,則AC=,CD=2.                                     ………2分

設(shè)F是AC與BD的交點(diǎn),∵ABCD為梯形,

∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

又EF在平面ACE內(nèi),∴PD∥平面ACE.                             ………6分

(Ⅱ)以A為坐標(biāo)原點(diǎn),AB為y軸,AP為z軸建立空間直角坐標(biāo)系,如圖.

設(shè)AB=1,則,,,,             ………7分

,,,,     ………8分

設(shè),∵,,∴,  …9分

設(shè),∵,∴, …10分

,      ………11分

∴二面角A-EC-P的大小為.………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 

(21)解:(Ⅰ)設(shè)所求的橢圓E的方程為,                ………1分

、,將代入橢圓得,     ………2分

,又,∴ ,                        ………3分

, ………4分,       ,              ………5分

∴所求的橢圓E的方程為.                                ………6分

(Ⅱ)設(shè)、,則,,          ………7分

又設(shè)MN的中點(diǎn)為,則以上兩式相減得:,         ………8分

,………9分,     ,                  ………10分

又點(diǎn)在橢圓內(nèi),∴,                               ………11分

即,,∴.                         ………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

(22)解:(Ⅰ)∵,            ……2分

,

時(shí),遞增,時(shí),遞減,時(shí),遞增,

所以的極大值點(diǎn)為,極小值點(diǎn)為,                     ……4分

,,              ……5分

的圖像如右圖,供評(píng)卷老師參考)

所以,的最小值是.                                      ……6分

(II)由(Ⅰ)知的值域是:

當(dāng)時(shí),為,當(dāng)時(shí),為.                ……8分                 

的值域是為,             ……9分

所以,當(dāng)時(shí),令,并解得,

當(dāng)時(shí),令,無(wú)解.

因此,的取值范圍是.                                     ……12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 


同步練習(xí)冊(cè)答案