②如果隨機變量服從.且.那么是R上的增函數(shù), 查看更多

 

題目列表(包括答案和解析)

已知正態(tài)分布的密度曲線是,給出以下四個命題:

①對任意成立;

②如果隨機變量服從,且,那么是R上的增函數(shù);

③如果隨機變量服從,那么的期望是108,標(biāo)準(zhǔn)差是100;

④隨機變量服從,,,則;其中,真命題的序號是   ________   .(寫出所有真命題序號)

查看答案和解析>>

已知正態(tài)分布N(μ,σ2)的密度曲線是,給出以下四個命題:
①對任意x∈R,f(μ+x)=f(μ-x)成立;
②如果隨機變量ξ服從N(μ,σ2),且F(x)=P(ξ<x),那么F(x)是R上的增函數(shù);
③如果隨機變量ξ服從N(108,100),那么ξ的期望是108,標(biāo)準(zhǔn)差是100;
④隨機變量ξ服從N(μ,σ2),,P(ξ>2)=p,則P(0<ξ<2)=1-2p;其中,真命題的序號是    .(寫出所有真命題序號)

查看答案和解析>>

已知正態(tài)分布N(μ,σ2)的密度曲線是f(x)=
1
σ
e-
(x-μ)2
2σ2
,給出以下四個命題:
①對任意x∈R,f(μ+x)=f(μ-x)成立;
②如果隨機變量ξ服從N(μ,σ2),且F(x)=P(ξ<x),那么F(x)是R上的增函數(shù);
③如果隨機變量ξ服從N(108,100),那么ξ的期望是108,標(biāo)準(zhǔn)差是100;
④隨機變量ξ服從N(μ,σ2),P(ξ<1)=
1
2
,P(ξ>2)=p,則P(0<ξ<2)=1-2p;其中,真命題的序號是
 
.(寫出所有真命題序號)

查看答案和解析>>

一.選擇題:CDDA  DDBA  BBDC .

二.填空題:(13)60,(14),(15),(16)①②④ .

三.解答題:

(17)解:(Ⅰ)∵

.                 ………3分

∴令,        ………4分

的遞減區(qū)間是,;              ………5分

,           ………6分

的遞增區(qū)間是.              ………7分

(Ⅱ)∵,∴,                     ………8分

      又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線

可得.                                     ………10分

(18)解:由題意,                                       ………1分

,                                        ………2分

,                              ………4分

,                            ………6分

,                      ………8分

 

 

文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

 

 

 

………9分

.          ………12分

(19)解:(Ⅰ)由題設(shè)可知,.                    ………1分

,

,                                 ………3分

,              ………5分

.                                             ………6分

(Ⅱ)設(shè).                        ………7分

顯然,時,,                                       ………8分

, ∴當(dāng)時,,∴,                       

當(dāng)時,,∴,                             ………9分

當(dāng)時,,∴,                        ………10分

當(dāng)時,恒成立,

恒成立,                               ………11分

∴存在,使得.                                 ………12分

(20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

設(shè)AB=1,則AC=,CD=2.                                     ………2分

設(shè)F是AC與BD的交點,∵ABCD為梯形,

∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

又EF在平面ACE內(nèi),∴PD∥平面ACE.                             ………6分

(Ⅱ)以A為坐標(biāo)原點,AB為y軸,AP為z軸建立空間直角坐標(biāo)系,如圖.

設(shè)AB=1,則,,,,             ………7分

,,,     ………8分

設(shè),∵,∴,  …9分

設(shè),∵,∴, …10分

,      ………11分

∴二面角A-EC-P的大小為.………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 

(21)解:(Ⅰ)設(shè)所求的橢圓E的方程為,                ………1分

、,將代入橢圓得,     ………2分

,又,∴ ,                        ………3分

, ………4分,       ,              ………5分

∴所求的橢圓E的方程為.                                ………6分

(Ⅱ)設(shè)、,則,,          ………7分

又設(shè)MN的中點為,則以上兩式相減得:,         ………8分

,………9分,     ,                  ………10分

又點在橢圓內(nèi),∴,                               ………11分

即,,∴.                         ………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

(22)解:(Ⅰ)∵,            ……2分

時,遞增,時,遞減,時,遞增,

所以的極大值點為,極小值點為,                     ……4分

,,              ……5分

的圖像如右圖,供評卷老師參考)

所以,的最小值是.                                      ……6分

(II)由(Ⅰ)知的值域是:

當(dāng)時,為,當(dāng)時,為.                ……8分                 

的值域是為,             ……9分

所以,當(dāng)時,令,并解得,

當(dāng)時,令,無解.

因此,的取值范圍是.                                     ……12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 


同步練習(xí)冊答案