若為真命題.則 解得:或. 查看更多

 

題目列表(包括答案和解析)

命題方程有兩個不等的正實數根, 命題方程無實數根。若“”為真命題,求的取值范圍。

【解析】本試題主要考查了命題的真值問題,以及二次方程根的綜合運用。

解:“p或q”為真命題,則p為真命題,或q為真命題,或q和p都是真命題

當p為真命題時,則,得;

當q為真命題時,則

當q和p都是真命題時,得

 

查看答案和解析>>

如圖,F是定直線l外的一個定點,C是l上的動點,有下列結論:若以C為圓心,CF為半徑的圓與l交于A、B兩點,過A、B分別作l的垂線與圓

C過F的切線交于點P和點Q,則P、Q必在以F為焦點,l為準線的同一條拋物線上.

(Ⅰ)建立適當的坐標系,求出該拋物線的方程;

(Ⅱ)對以上結論的反向思考可以得到另一個命題:

“若過拋物線焦點F的直線與拋物線交于P、Q兩點,

則以PQ為直徑的圓一定與拋物線的準線l相切”請

問:此命題是否正確?試證明你的判斷;

(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應的命題并

證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為評分依據)

查看答案和解析>>

如圖,F是定直線l外的一個定點,C是l上的動點,有下列結論:若以C為圓心,CF為半徑的圓與l交于A、B兩點,過A、B分別作l的垂線與圓

C過F的切線交于點P和點Q,則P、Q必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當的坐標系,求出該拋物線的方程;
(Ⅱ)對以上結論的反向思考可以得到另一個命題:
“若過拋物線焦點F的直線與拋物線交于P、Q兩點,
則以PQ為直徑的圓一定與拋物線的準線l相切”請
問:此命題是否正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應的命題并
證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為評分依據)

查看答案和解析>>

如圖,F是定直線l外的一個定點,C是l上的動點,有下列結論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當的坐標系,求出該拋物線的方程;
(Ⅱ)對以上結論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據)
精英家教網

查看答案和解析>>

如圖,F是定直線l外的一個定點,C是l上的動點,有下列結論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當的坐標系,求出該拋物線的方程;
(Ⅱ)對以上結論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據)
精英家教網

查看答案和解析>>

1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當時,△,

,當時,△,且,即

所以

6.A      7.D      8.A

9.D提示:設3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因為的充分而不必要條件,所以,即。可知A=或方程的兩根要在區(qū)間[1,2]內,也即以下兩種情況:

(1);

(2) ;綜合(1)、(2)可得。

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習冊答案