由于代入①得的解析式 查看更多

 

題目列表(包括答案和解析)

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓C;其長軸長等于4,離心率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)(0,1), 問是否存在直線與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請說明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運(yùn)用。

第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

第二問中,

假設(shè)存在這樣的直線,設(shè),MN的中點(diǎn)為

 因?yàn)閨ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

 (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點(diǎn)為

 因?yàn)閨ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

 

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時,,則。

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增。∴最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

設(shè)拋物線>0)的焦點(diǎn)為,準(zhǔn)線為上一點(diǎn),已知以為圓心,為半徑的圓,兩點(diǎn).

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,,三點(diǎn)在同一條直線上,直線平行,且只有一個公共點(diǎn),求坐標(biāo)原點(diǎn)到距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點(diǎn)為E,圓F的半徑為,

則|FE|=,=,E是BD的中點(diǎn),

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:

(Ⅱ) 解析1∵,,三點(diǎn)在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

設(shè)直線的方程為:,代入得,

只有一個公共點(diǎn), ∴=,∴,

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

∴坐標(biāo)原點(diǎn)到,距離的比值為3.

解析2由對稱性設(shè),則

      點(diǎn)關(guān)于點(diǎn)對稱得:

     得:,直線

     切點(diǎn)

     直線

坐標(biāo)原點(diǎn)到距離的比值為

 

查看答案和解析>>

為了比較注射A,B兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做實(shí)驗(yàn),將這200只家兔隨機(jī)地分成兩組。每組100只,其中一組注射藥物A,另一組注射藥物B。下表1和表2分別是注射藥物A和藥物B后的實(shí)驗(yàn)結(jié)果。(皰疹面積單位:

表1:注射藥物A后皮膚皰疹面積的頻數(shù)分布表

皰疹面積

頻數(shù)

30

40

20

10

頻率/組距

 

 

 

 

表2:注射藥物B后皮膚皰疹面積的頻數(shù)分布表

皰疹面積

頻數(shù)

10

25

20

30

15

頻率/組距

 

 

 

 

 

(1)     完成上面兩個表格及下面兩個頻率分布直方圖;

(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認(rèn)為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”。 (結(jié)果保留4位有效數(shù)字)

 

皰疹面積小于70

皰疹面積不小于70

合計(jì)

注射藥物A

a=

b=

 

注射藥物B

c=

d=

 

合計(jì)

 

 

n=

附:

 

P(K2≥k)

0.10

0.05

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

【解析】根據(jù)已知條件,得到列聯(lián)表中的a,b,c,d的值,代入已知的公式中

然后求解值,判定兩個分類變量的相關(guān)性。

解:

    由于K2≥10.828,所以有99.9%的把握認(rèn)為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”

 

查看答案和解析>>


同步練習(xí)冊答案