(A) (B) 查看更多

 

題目列表(包括答案和解析)

“a=b”是“直線y=x+2與圓(x-a)2+(y-b)2=2相切”的( 。
A、充分不必要條件B、必要不充分條件C、充分必要條件D、既不充分又不必要條件

查看答案和解析>>

a
b
?存在唯一的實數λ,使
b
a
;
a
b
?存在不全為零的實數λ,μ,使λ
a
b
=
0
;
a
b
不共線?若存在實數λ,μ使λ
a
b
=
0
,則λ=μ=0;
a
b
不共線?不存在實數λ,μ使λ
a
b
=
0
.下列命題是真命題的是
 
(填序號)

查看答案和解析>>

2、“a+b>2c”的一個充分條件是( 。

查看答案和解析>>

△A'B'C'斜二測畫法畫出的正△ABC的直觀圖,記△A'B'C'的面積為S',△ABC的面積為S,則
S′S
=
 

查看答案和解析>>

2、“a+b是偶數”是“a與b都是偶數”的( 。

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1.B   2.C   3.A   4.D   5.C   6.D  7.B  8.C  9.A  10.D

二、填空題(每小題4分,共24分)

    l 1.192   12.286     13.   14.   15.840     l6.4;

三、解答題(本大題共6小題,共76分)

17.(本題12分)

解:(Ⅰ)

                         ………………………………(2分)

                 

   …………(4分)

                    

                                             …………………………………(6分)

       (Ⅱ)

               .                     ……………(8分)

              由已知條件

              根據正弦定理,得               …………………(10分)

                   ……………………(12分)

18.(本題12分)

解:(Ⅰ)在7人中選出3人,總的結果數是種           ………………(2分)

記“被選中的3人中至多有1名女生”為事件A,則A包含兩種情形:

              ①被選中的是1名女生,2名男生的結果數是種,

               ②被選中的是3名男生的結果數是種,           ………………(4分)

至多選中1名女生的概率為.  ……………(6分)

(Ⅱ)由題意知隨機變量可能的取值為:0,1,2,3,則有

      ……………………(8分)

的分布列

 

0

1

2

3

P

 

 

 

……………(10分)

 

的數學期望        … ……(12分)

19.(本題12分)

解:(Ⅰ)連接,以所在的直線為軸,軸,

建立如圖所示的空間直角坐標系.       …………………………………(2分)

    正四棱錐的底面邊長和側棱長都是2,

   

   的中點.

                                     …………(4分)

 

即異面直線所成的角為      ………(6分)

(Ⅱ)

是平面的一個法向量.        ……………………………(8分)

由(Ⅰ)得

設平面的一個法向量為,

則由,得

,不妨設

  得平面的一個法向量為.            ………………(10分)

二面角小于,

二面角的余弦值為.             ………………(12分)

20.(本題12分)

    解:(Ⅰ)由已知得,又,

                  .   …………………………(2分)

                  ,公差

                  由,得   …………………………(4分)

                    

.解得(舍去).

       .           …………………………(6分)

(Ⅱ)由

          …………………………(8分)

                      …………………………(9分)

   是等差數列.

    ………………………(11分)

            ……………………(12分)

21.(本題14分)

  解:(Ⅰ)依題意得

 

        .                  ………………………(2分)

            把(1,3)代入

            解得

橢圓的方程為.                 ………………………(4分)

(Ⅱ)由(Ⅰ)得,設,如圖所示

   點在橢圓上,

.       ①

點異于頂點、,

、三點共線,可得

從而     …………………………(7分)

 ②  …………(8分)

將①式代入②式化簡得            …………(10分)

                                     …………(12分)

于是為銳角,為鈍角.

點B在以MN為直徑的圓內.                     ……………(14分)

 

22.(本題14分)

解:(Ⅰ),

                  令,得.          ………………(2分)

                  當時,上單調遞

時,上單調遞減,

                  而,

                  時,的值域是.    ……………(4分)

(Ⅱ)設函數上的值域是A,

若對任意.總存在1,使,

.                               ……………(6分)

①當時,,

               函數上單調遞減.

              ,

時,不滿足;    ……………………(8分)

②當時,,

,得(舍去        ………………(9分)

(i)時,的變化如下表:

0

2

 

-

0

+

 

0

,解得.      …………………(11分)

(ii)當時,

       函數上單調遞減.

       ,

        時,不滿足.         …………………(13分)

        綜上可知,實數的取值范圍是.     ……………………(14分)

 


同步練習冊答案