A. B. 查看更多

 

題目列表(包括答案和解析)

A.        B.     C.       D.不存在

查看答案和解析>>

     A          B           C            D

查看答案和解析>>

 (     )

    A.      B.      C.            D.

查看答案和解析>>

(    )

A.             B.1                C.             D.

 

查看答案和解析>>

                                                           (    )

A.             B.               C.             D.

 

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 ADBBA    6―10 DDCBC    11―12 CA

二、填空題:本大題共4小題,每小題5分,共20分。

13.300    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時,

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

19.(本小題滿分12分)

解法一:

   (I)證明

如圖,連結(jié)AC,AC交BD于點G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.

又E為PC的中點,

∴EG//PA。

∵EG平面EDB,PA平面EDB,

∴PA//平面EDB   ………………4分

   (II)證明:

∵ PD⊥底面ABCD,∴PD⊥DB,PD⊥DC,PD⊥DB。

又∵BC⊥DC,PD∩DC=D,

∴BC⊥平面PDC。

∴PC是PB在平面PDC內(nèi)的射影。

∵PD⊥DC,PD=DC,點E是PC的中點,

∴DE⊥PC。

由三垂線定理知,DE⊥PB。

∵DE⊥PB,EF⊥PB,DE∩EF=E,

∴PB⊥平面EFD。   …………………………8分

   (III)解:

∵PB⊥平面EFD,

∴PB⊥FD。

又∵EF⊥PB,F(xiàn)D∩EF=F,

∴∠EFD就是二面角C―PB―D的平面角!10分

∵PD=DC=BC=2,

∴PC=DB=

∵PD⊥DB,

由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

∴DE⊥平面PBC。

∵EF平面PBC,

∴DE⊥EF。

∴∠EFD=60°。

故所求二面角C―PB―D的大小為60°。  ………………12分

解法二:

如圖,以點D為坐標(biāo)原點,DA、DC、DP所在直線分別為x軸、y軸、z軸,

建立空間直角坐標(biāo)系,得以下各點坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

C(0,2,0),P(0,0,2)   ………………1分

   (I)證明:

連結(jié)AC,AC交BD于點G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.G點坐標(biāo)為(1,1,0)。

    高考資源網(wǎng)www.ks5u.com

    ∴PA//平面EDB   ………………4分

       (II)證明:

       (III)解:

    ∵PB⊥平面EFD,

    ∴PB⊥FD。

    又∵EF⊥PB,F(xiàn)D∩EF=F,

    ∴∠EFD就是二面角C―PB―D的平面角!10分

    ∴∠EFD=60°。

    故所求二面角C―PB―D的大小為60°。  ………………12分

    20.(本小題滿分12分)

       (I)解:

    設(shè) “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,所以取出的4個球均為黑球的概率為

       ………………2分

    ,

    ∴取出的4個球均為黑球的概率為   ………………5分

       (II)解:設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是黑球,1個是紅球”為事件,“從乙盒內(nèi)取出的2個球均為黑球;從甲盒內(nèi)取出的2個球中,1個是黑球,1個是紅球為事件D。

        ∴取出的“4個球中恰有3個黑球”為事件C+D。

    ∵事件C,D互斥,

    ∴取出的4個球中恰有3個黑球的概率為

    21.(本小題滿分12分)

       (I)解:

    由題意設(shè)雙曲線S的方程為   ………………2分

    c為它的半焦距,

     

       (II)解:

    22.(本小題滿分12分)

       (I)解:

       (II)解:

       (III)解:

       

     

    w.w.w.k.s.5.u.c.o.m

    www.ks5u.com


    同步練習(xí)冊答案