A. B. C. D.變式: 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標系與參數(shù)方程
P為曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點,求它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對應的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標.
C.已知圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標方程化為直角坐標方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應的一個特征向量為
1
-4
,點P(2,-1)在矩陣A對應的變換下得到點P′(5,1),求矩陣A.
C.選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

 

A.(幾何證明選講選做題)

如圖,已知AB為圓O的直徑,BC切圓O于點B,AC交圓O于點P,E為線段BC的中點.求證:OPPE

B.(矩陣與變換選做題)

已知MN,設曲線y=sinx在矩陣MN對應的變換作用下得到曲線F,求F的方程.

C.(坐標系與參數(shù)方程選做題)

在平面直角坐標系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點、射線Ox為極軸的極坐標系中,曲線C的極坐標方程為ρsinθ=8cosθ.若直線m與曲線C交于AB兩點,求線段AB的長.

D.(不等式選做題)

x,y均為正數(shù),且xy,求證:2x≥2y+3.

 

查看答案和解析>>

A.(幾何證明選講選做題)


如圖,已知AB為圓O的直徑,BC切圓O于點B,AC交圓O于點P,E為線段BC的中點.求證:OPPE

B.(矩陣與變換選做題)
已知M,N,設曲線y=sinx在矩陣MN對應的變換作用下得到曲線F,求F的方程.
C.(坐標系與參數(shù)方程選做題)
在平面直角坐標系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點、射線Ox為極軸的極坐標系中,曲線C的極坐標方程為ρsinθ=8cosθ.若直線m與曲線C交于AB兩點,求線段AB的長.
D.(不等式選做題)
xy均為正數(shù),且xy,求證:2x≥2y+3.

查看答案和解析>>


同步練習冊答案