題目列表(包括答案和解析)
已知拋物線的焦點為F,準線為l,是否存在雙曲線C,同時滿足以下兩個條件:
(Ⅰ)雙曲線C的一個焦點為F,相應于F的準線為l;
(Ⅱ)雙曲線C截與直線x-y=0垂直的直線所得線段AB的長為2,并且線段AB的中點恰好在直線x-y=0上.
若存在,求出該雙曲線C的方程;若不存在,說明理由.
⊙O1和⊙O2的極坐標方程分別為,.
⑴把⊙O1和⊙O2的極坐標方程化為直角坐標方程;
⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標方程.
【解析】本試題主要是考查了極坐標的返程和直角坐標方程的轉化和簡單的圓冤啊位置關系的運用
(1)中,借助于公式,,將極坐標方程化為普通方程即可。
(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(I),,由得.所以.
即為⊙O1的直角坐標方程.
同理為⊙O2的直角坐標方程.
(II)解法一:由解得,
即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.
解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標方程為y=-x
x2 |
a2 |
y2 |
b2 |
OP1 |
OP2 |
27 |
4 |
PP1 |
PP2 |
0 |
MQ |
QN |
F1F2 |
GM |
GN |
已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
【解析】第一問利用設橢圓的方程為,由題意得
解得
第二問若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.解得。
解:⑴設橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.
又,
因為,即,
所以.
即.
所以,解得.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com