(1) 求證,平面 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,-2),點(diǎn)C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)點(diǎn)C的軌跡與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
交于兩點(diǎn)M,N,且以MN為直徑的圓過(guò)原點(diǎn),求證:
1
a2
-
1
b2
為定值.

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)M(1,-3)N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R)

(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)點(diǎn)C的軌跡與拋物線y2=4x交于A、B兩點(diǎn),求證:
OA
OB
;
(Ⅲ)求以AB為直徑的圓的方程.

查看答案和解析>>

平面直角坐標(biāo)系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直線l:y=kx+b上的n個(gè)點(diǎn)
(n∈N*,k、b均為非零常數(shù)).
(1)若數(shù)列{xn}成等差數(shù)列,求證:數(shù)列{yn}也成等差數(shù)列;
(2)若點(diǎn)P是直線l上一點(diǎn),且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若點(diǎn)P滿足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我們稱
OP
是向量
OA1
OA2
,…,
OAn
的線性組合,{an}是該線性組合的系數(shù)數(shù)列.當(dāng)
OP
是向量
OA1
OA2
,…,
OAn
的線性組合時(shí),請(qǐng)參考以下線索:
①系數(shù)數(shù)列{an}需滿足怎樣的條件,點(diǎn)P會(huì)落在直線l上?
②若點(diǎn)P落在直線l上,系數(shù)數(shù)列{an}會(huì)滿足怎樣的結(jié)論?
③能否根據(jù)你給出的系數(shù)數(shù)列{an}滿足的條件,確定在直線l上的點(diǎn)P的個(gè)數(shù)或坐標(biāo)?
試提出一個(gè)相關(guān)命題(或猜想)并開展研究,寫出你的研究過(guò)程.[本小題將根據(jù)你提出的命題(或猜想)的完備程度和研究過(guò)程中體現(xiàn)的思維層次,給予不同的評(píng)分].

查看答案和解析>>

13、求證:兩條異面直線不能同時(shí)和一個(gè)平面垂直;

查看答案和解析>>

平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點(diǎn).
(1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達(dá)式并給出證明;
(2)求證:這n條直線把平面分成
n(n+1)2
+1
個(gè)區(qū)域.

查看答案和解析>>

第I卷

一、選擇題:本大題共12小題,每小題5分,共60分。

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

文A

理D

A

D

C

D

A

文C

理B

A

B

D

文C

理C

第II卷:本大題共12小題,每小題5分,共60分。

二 填空:本大題共4小題,每小題5分,共20分。

13 (理)3 ,(2文)6ec8aac122bd4f6e 14 .2   15. 6ec8aac122bd4f6e   16 ③④

三 解答題:本大題共6小題,共70分,解答應(yīng)寫出比小的文字說(shuō)明、證明 過(guò)程或演算步驟

17 本小題滿分10分

解:(1)6ec8aac122bd4f6e

  。ǎ玻┰6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     6ec8aac122bd4f6e..................7分

    由正弦定理,知:6ec8aac122bd4f6e.........................8分

    6ec8aac122bd4f6e,6ec8aac122bd4f6e.......................9分

 

 

 

 

 

 

 

18(本小題滿分12分)

解:(1)由甲射手命中目標(biāo)的概率與距離的平方成反比,可設(shè)

6ec8aac122bd4f6e

(2)(理)6ec8aac122bd4f6e的所有可能取值為0,1,2,3

6ec8aac122bd4f6e

(文)記“射手甲在該射擊比賽中能得分”為事件A, 則

6ec8aac122bd4f6e

 

 

19. (本小題滿分12分)

解:(1)證明:連結(jié)AC1.設(shè)6ec8aac122bd4f6e,

6ec8aac122bd4f6e是直三棱柱,且6ec8aac122bd4f6e

6ec8aac122bd4f6e是正方形,E是AC1中點(diǎn)

又D為AB中點(diǎn),6ec8aac122bd4f6e

又ED6ec8aac122bd4f6e平面6ec8aac122bd4f6e, 6ec8aac122bd4f6e平面6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e(2)解法一:設(shè)H是AC中點(diǎn),F(xiàn)是EC中點(diǎn),連結(jié)DH、HF、FD

6ec8aac122bd4f6e

又側(cè)棱6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e

6ec8aac122bd4f6e

由(1)得6ec8aac122bd4f6e是正方形,則6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e上是射影,6ec8aac122bd4f6e

6ec8aac122bd4f6e是二面角6ec8aac122bd4f6e的平面角

6ec8aac122bd4f6e

6ec8aac122bd4f6e在直角三角形6ec8aac122bd4f6e中,6ec8aac122bd4f6e

6ec8aac122bd4f6e二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e

6ec8aac122bd4f6e解法二:在直三棱柱6ec8aac122bd4f6e

直線為6ec8aac122bd4f6e軸、6ec8aac122bd4f6e軸、軸建立如圖所示空間直角坐標(biāo)系

6ec8aac122bd4f6e,則

6ec8aac122bd4f6e

設(shè)平面6ec8aac122bd4f6e的法向量為6ec8aac122bd4f6e,則

6ec8aac122bd4f6e

6ec8aac122bd4f6e,得平面A1DC的一個(gè)法向量為6ec8aac122bd4f6e

6ec8aac122bd4f6e為平面CAA1C1的一個(gè)法向量

6ec8aac122bd4f6e

由圖可知二面角A-A1C-D的大小為6ec8aac122bd4f6e

 

 

20. (本小題滿分12分)

解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e是以6ec8aac122bd4f6e為公差的等差數(shù)列

6ec8aac122bd4f6e

(2)(理)當(dāng)

6ec8aac122bd4f6e

6ec8aac122bd4f6e最小正整數(shù)6ec8aac122bd4f6e

(文)

6ec8aac122bd4f6e

 

 

21. (本小題滿分12分)

解:(1)由6ec8aac122bd4f6e

6ec8aac122bd4f6e

(2)由(1)知橢圓方程可化為6ec8aac122bd4f6e

6ec8aac122bd4f6e右焦點(diǎn)為6ec8aac122bd4f6e

6ec8aac122bd4f6e關(guān)于直線6ec8aac122bd4f6e的對(duì)稱點(diǎn)為6ec8aac122bd4f6e

將其代入6ec8aac122bd4f6e

6ec8aac122bd4f6e橢圓的方程為6ec8aac122bd4f6e

 

 

22. (本小題滿分12分)

解:(理)(1)

      6ec8aac122bd4f6e

(2)

6ec8aac122bd4f6e

    6ec8aac122bd4f6e

(3)證法1:用數(shù)學(xué)歸納法,略

證法2;由(2)知6ec8aac122bd4f6e恒成立,即6ec8aac122bd4f6e

6ec8aac122bd4f6e

將以上不等式相加,得

6ec8aac122bd4f6e

(文)解:(1)由6ec8aac122bd4f6e,求導(dǎo)數(shù)得6ec8aac122bd4f6e

過(guò)6ec8aac122bd4f6e上的點(diǎn)6ec8aac122bd4f6e的切線方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e

而過(guò)6ec8aac122bd4f6e上的點(diǎn)6ec8aac122bd4f6e的切線方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e處有極值,故6ec8aac122bd4f6e

   由(i)(ii)(iii)得 6ec8aac122bd4f6e

(2)解法1:在6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞增,又6ec8aac122bd4f6e,由(i)知6ec8aac122bd4f6e

        依題意6ec8aac122bd4f6e6ec8aac122bd4f6e上恒有6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

綜上所述,參數(shù)b的取值范圍是6ec8aac122bd4f6e

解法2:同解法1,可得6ec8aac122bd4f6e

6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e,不等式顯然成立

 

6ec8aac122bd4f6e

 

 


同步練習(xí)冊(cè)答案