題目列表(包括答案和解析)
(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且.
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為和()的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
我們把定義在上,且滿足(其中常數(shù)滿足)的函數(shù)叫做似周期函數(shù).
(1)若某個似周期函數(shù)滿足且圖像關(guān)于直線對稱.求證:函數(shù)是偶函數(shù);
(2)當(dāng)時,某個似周期函數(shù)在時的解析式為,求函數(shù),的解析式;
(3)對于確定的時,,試研究似周期函數(shù)函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?若可能,求出的取值范圍;若不可能,請說明理由.
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數(shù)列,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項,第三項和第五項.
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個命題:“對于首項為正整數(shù),公比為正整數(shù)()的無窮等比數(shù) 列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項,由與的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
(本題共3小題,滿分18分。第1小題滿分4分,第2小題滿分7分,第3小題7分)
對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù).
① 對任意的,總有;
② 當(dāng)時,總有成立.
已知函數(shù)與是定義在上的函數(shù).
(1)試問函數(shù)是否為函數(shù)?并說明理由;
(2)若函數(shù)是函數(shù),求實數(shù)的值;
(3)在(2)的條件下,是否存在實數(shù),使方程恰有兩解?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且.
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為和()的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.
一、填空題
1. 2. 3.156 4. - 5.
6. 7. 8.(理) (文) 9.0
10. 11.(理) (文)
二、選擇題
12.C 13.B 14.(理)C (文)B 15.B
三、解答題
16. 【解】(1)由已知:, (2分)
即, (4分)
∴,故。 (6分)
(2)由,得, (8分)
∴,。 (10分)
故。 (12分)
17.【解】
(理)設(shè)三次事件依次為,命中率分別為,
(1)令,則,∴,,。 (6分)
(2)。 (13分)
(文)拋物線的準(zhǔn)線是, (3分)
雙曲線的兩條漸近線是。 (6分)
三條線為成得三角形區(qū)域的頂點為,,,(10分)
當(dāng)時,。 (13分)
18.【解】(1),。(4分)
(2)令,,
,(8分)
即三位市民各獲得140、100和110元折扣。(10分)
(3)(元)。(16分)
19.【解】(1)直線的法向量,的方程:,
即為;…(2分)
直線的法向量,的方程:,
即為。 (4分)
(2)。 (6分)
設(shè)點的坐標(biāo)為,由,得。(8分)
由橢圓的定義的知存在兩個定點,使得恒為定值4。
此時兩個定點為橢圓的兩個焦點。(10分)
(3)設(shè),,則,,
由,得。(12分)
;
當(dāng)且僅當(dāng)或時,取最小值。(14分)
,故與平行。(16分)
20.【解】(1)由,得。由,得第二行的公差,,∴。(2分)
由,,得,∴。(4分)
(2);(6分)
。(10分)
(3),, 兩式相減,得,。(12分)當(dāng)時,。(13分)
①時,顯然能被21整除;(14分)
②假設(shè)時,能被21整除,當(dāng)時,
能被21整除。結(jié)論也成立。(17分)
由①、②可知,當(dāng)是3的倍數(shù)時,能被21整除。(18分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com