15.球面上有三個(gè)點(diǎn).其中任意兩點(diǎn)的球面距離都等于大闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

題目列表(包括答案和解析)

球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的,經(jīng)過(guò)這三個(gè)點(diǎn)的小圓的周長(zhǎng)為4π.那么這個(gè)球的半徑為

A.4                                       B.2

C.2                                             D.4

查看答案和解析>>

球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的,經(jīng)過(guò)這三個(gè)點(diǎn)的小圓的周長(zhǎng)為4π.那么這個(gè)球的半徑為

A.4                  B.2                   C.2                  D.4

查看答案和解析>>

球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的,若經(jīng)過(guò)這3個(gè)點(diǎn)的小圓的周長(zhǎng)為4,那么這個(gè)球的表面積為_(kāi)__________________.

查看答案和解析>>

球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的,經(jīng)過(guò)這三個(gè)點(diǎn)的小圓周長(zhǎng)為4,那么這個(gè)球的表面積為(   ) 

A.192   B.48   C.16   D.12

 

查看答案和解析>>

球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的,經(jīng)過(guò)這三個(gè)點(diǎn)的小圓的周長(zhǎng)為4π,則這個(gè)球的體積為

[  ]

A.π

B.4π

C.π

D.32π

查看答案和解析>>

一. 每小題5分,共60分      DACDB  DACBB   DD

二. 每小題5分,共20分.其中第16題前空2分,后空3分.

13.  60;     14.  ;     15. ;    16.   2,- 

三.解答題:本大題共6個(gè)小題,共70分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

17.(Ⅰ) 

    

(Ⅱ)                (7分)

       (8分)

                      (10分)

18.解:(Ⅰ)記“該人被錄用”的事件為事件A,其對(duì)立事件為,則

(Ⅱ)該生參加測(cè)試次數(shù)ξ的可能取值為2,3,4,依題意得

(10分)

(8分)

(6分)

 

 

分布列為 

2

3

4

p

1/9

4/9

4/9

……………………………….11分

 

 

 

……………..12分       

19. 解:(Ⅰ)依題意 ,,故…1分,     

當(dāng)時(shí), ① 又

②?①整理得:,故為等比數(shù)列…………………3分

…………4分∴…………………………….5分

,即是等差數(shù)列………………….6分

(Ⅱ)由(Ⅰ)知,

…8分.

      …………9分,依題意有,解得…11分

故所求最大正整數(shù)的值為……………………………………………12分

20.

 

 

 

 

 

 

 

 

 

 

解法一圖

解法二圖

 

 

解法一:(1)證明:

………………………….5分

(8分)

 解法二:以C為坐標(biāo)原點(diǎn),射線CA為x軸的正半軸,建立如圖所示的空間直角坐        標(biāo)系C-xyz.依題意有C ,

                      (3分)

(Ⅰ)

(5分)

(12分)

設(shè)

變化情況如下表:

 

(0,1)

1

(1,+∞)

0

+

遞減

0

遞增

處有一個(gè)最小值0,即當(dāng)時(shí),>0,∴=0只有一個(gè)解.即當(dāng)時(shí),方程有唯一解………………………6分.

        <blockquote id="n5opi"></blockquote>

            1. (12分)

               (1分) 依題意又由過(guò)兩點(diǎn)A,B的切線相互垂直得

              從而

              即所求曲線E的方程為 y=……………………………………4分

                (Ⅱ)由(Ⅰ)得曲線F方程為 即,令=0,得曲線F與軸交點(diǎn)是(0,b);令,由題意b≠-1 且Δ>0,解得b<3 且b≠-1.           ………………………………………….6分

              (?)方法一:設(shè)所求圓的一般方程為=0 得這與=0 是同一個(gè)方程,故D=4,.………………….8分.

              =0 得,此方程有一個(gè)根為b+1,代入得出E=?b?1.

              所以圓C 的方程…………………9分

              方法二:①+②得

              (?)方法一:圓C 必過(guò)定點(diǎn)(0,1)和(-4,1).………………………11分

              證明如下:將(0,1)代入圓C 的方程,得左邊=0+1+2×0-(b+1)+b=0,右邊=0,

              所以圓C 必過(guò)定點(diǎn)(0,1).同理可證圓C 必過(guò)定點(diǎn)(-4,1).…………………12分

                方法二:由 圓C 的方程得………………11分

              12分

               


              同步練習(xí)冊(cè)答案

                  闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷