題目列表(包括答案和解析)
(Ⅰ)已知公差不為0的等差數(shù)列{an}的首項a1=1,前n項和為Sn,若數(shù)列是等差數(shù)列,
①求an;
②令(a>0),若對一切n∈N*,都有,求q的取值范圍;
(Ⅱ)是否存在各項都是正整數(shù)的無窮數(shù)列{cn},使對一切n∈N*都成立?若存在,請寫出數(shù)列{cn}的一個通項公式;若不存在,說明理由。
對于函數(shù)若存在,使成立,則稱為的不動點,已知函數(shù)
(1)當a=1,b=3時,求函數(shù)的不動點;
(2)若對于任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍。
AB |
BC |
3 |
2 |
3 |
對于函數(shù),若存在,使得成立,稱為不動點,已知函數(shù)
(1) 當時,求函數(shù)不動點.
(2)若對任意的實數(shù),函數(shù)恒有兩個相異的不動點,求a的取值范圍.
一、選擇題(本大題共8小題,每小題5分,共40分.)
題號
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
答案
D
B
A
C
D
C
B
C
二、填空題(本大題共6小題,每小題5分.有兩空的小題,第一空3分,第二空2分,共30分)
(9) (10) 或 (11)
(12) , (13) (14)4,8
三、解答題(本大題共6小題,共80分.)
(15) (共12 分)
解:(I),,
= ?
2分
4分
= . 5分
又 6分
函數(shù)的最大值為. 7分
當且僅當(Z)時,函數(shù)取得最大值為.
(II)由(Z), 9分
得 (Z). 11分
函數(shù)的單調(diào)遞增區(qū)間為[](Z). 12分
(16) (共14分)
解法一:(I)證明:連結(jié)A1D,在正方體AC1中, ∵A1B1^平面A1ADD1,
\ A1D是PD在平面A1ADD1 內(nèi)的射影. 2分
在正方形A1ADD1中, A1D^ AD1, \ PD⊥AD1. 4分
解(II) 取中點,連結(jié),,則//.
平面,∴平面.
∴為在平面內(nèi)的射影.
則為CP與平面D1DCC1所成的角. 7分
在中,
∴與平面D1DCC1所成的角的正弦值為. 9分
(III)在正方體AC1中,∥.
平面內(nèi),
∴∥平面.
∴點到平面的距離與點C1到平面的距離相等.
又平面,面,
∴平面平面.
又平面平面,
過C1作C1H于H,則C1H平面.
∴C1的長為點C1到平面的距離. 12分
連結(jié)C1 ,并在上取點,使//.
在中,,得.
∴點到平面的距離為. 14分
解法二:如圖,以D為坐標原點,建立空間直角坐標系.
由題設知正方體棱長為4,則、、
、、、. 1分
(I)設,. 3分
, . 4分
(II)由題設可得, , 故.
, 是平面
的法向量. 7分
. 8分
∴與平面D1DCC1所成角的正弦值為. 9分
(III),設平面D1DP的法向量,
∵.
則,即令,則
. 12分
點C到平面D1DP的距離為. 14分
(17)(共13分)
解(I)設事件“某人參加A種競猜活動只獲得一個福娃獎品”為事件M, 1分
依題意,答對一題的概率為,則
P(M)= 3分
=. 4分
(II)依題意,某人參加B種競猜活動,結(jié)束時答題數(shù)=1,2,…,6, 5分
則,,,,
, . 11分
所以,的分布列是
1
2
3
4
5
6
P
設,
則
∴,
∴ E==. 13分
答:某人參加A種競猜活動只獲得一個福娃獎品的概率為;某人參加B種競猜活動,結(jié)束時答題數(shù)為,E為.
(18)(本小題共13分)
解;如圖,建立直角坐標系,依題意:設橢圓方
程為(a>b>0), 1分
(I)依題意: 4分
橢圓M的離心率大于0.7,所以.
橢圓方程為. 6分
(II)因為直線l過原點與橢圓交于點,設橢圓M的左焦點為.
由對稱性可知,四邊形是平行四邊形.
的面積等于的面積. 8分
∵
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com