解:方法一: (I)證明:連結(jié)OC 查看更多

 

題目列表(包括答案和解析)

解不等式:

【解析】本試題主要是考查了分段函數(shù)與絕對值不等式的綜合運用。利用零點分段論 的思想,分為三種情況韜略得到解集即可。也可以利用分段函數(shù)圖像來解得。

解:方法一:零點分段討論:   方法二:數(shù)形結(jié)合法:

 

查看答案和解析>>

(2003•海淀區(qū)一模)已知關(guān)于x的不等式
ax-5x2-a
<0的解集為M.
(I)當a=4時,求集合M;
(II)若3∈M,求實數(shù)a的取值范圍.

查看答案和解析>>

(必做題)先閱讀:如圖,設(shè)梯形ABCD的上、下底邊的長分別是a,b(a<b),高為h,求梯形的面積.
方法一:延長DA、CB交于點O,過點O作CD的垂線分別交AB、CD于E、F,則EF=h.
設(shè)OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行線MN分別交AD、BC于MN,過點A作BC的平行線AQ分別于MN、DC于PQ,則△AMP∽△ADQ.
設(shè)梯形AMNB的高為x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的問題:
已知四棱臺ABCD-A′B′C′D′的上、下底面的面積分別是S1,S2(S1<S2),棱臺的高為h,類比以上兩種方法,分別求出棱臺的體積(棱錐的體積=
1
3
×底面積×高).

查看答案和解析>>

(2013•蘭州一模)選修4-5:《不等式選講》
已知函數(shù)f(x)=|x-2|-|x-5|.
(I)證明:-3≤f(x)≤3;
(Ⅱ)求不等式f(x)≥x2-8x+15的解集.

查看答案和解析>>

精英家教網(wǎng)選作題:考生任選一題作答,如果多做,則按所做的第一題計分.
A 如圖,△ABC的角平分線AD的延長線交它的外接圓于點E.
(I)證明:△ABE∽△ADC
(II)若△ABC的面積S=
1
2
AD•AE
,求∠BAC的大。
B 已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動點,求PQ中點M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.                
C 已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案