②若m.l是異面直線., 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,一條準(zhǔn)線方程為x=4.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M,設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值.

查看答案和解析>>

如圖直線l與x軸、y軸的正半軸分別交于A(8,0)、B(0,6)兩點(diǎn),P為直線l上異于A、B兩點(diǎn)之間的一動(dòng)點(diǎn).且PQ∥OA交OB于點(diǎn)Q.
(1)若△PBQ和四邊形OQPA的面積滿足S四OQPA=3S△PBQ時(shí),請(qǐng)你確定P點(diǎn)在AB上的位置,并求出線段PQ的長(zhǎng);
(2)在x軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形,若存在,求出點(diǎn)M與P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知橢圓E:(a>b>0)的離心率為,一條準(zhǔn)線方程為x=4.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M,設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值.

查看答案和解析>>

如圖直線l與x軸、y軸的正半軸分別交于A(8,0)、B(0,6)兩點(diǎn),P為直線l上異于A、B兩點(diǎn)之間的一動(dòng)點(diǎn).且PQ∥OA交OB于點(diǎn)Q.
(1)若△PBQ和四邊形OQPA的面積滿足S四OQPA=3S△PBQ時(shí),請(qǐng)你確定P點(diǎn)在AB上的位置,并求出線段PQ的長(zhǎng);
(2)在x軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形,若存在,求出點(diǎn)M與P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案