(2)解法一:如圖.過P作于D.則由題意.知OA=2.OB=6.OC=8 查看更多

 

題目列表(包括答案和解析)

閱讀理解題:
已知:如圖,△ABC中,AB=AC,P是底邊BC上的任一點(diǎn)(不與B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求證:CD=PE+PF.
在解答這個問題時,小明與小穎的思路方法分別如下:
小明的思路方法是:過點(diǎn)P作PG⊥CD于G(如圖1),則可證得四邊形PEDG是矩形,也可證得△PCG≌△CPF,從而得到PE=DG,PF=CG,因此得CD=PE+PF.
小穎的思路方法是:連接PA(如圖2),則S△ABC=S△PAB+S△PAC,再由三角形的面積公式便可證得CD=PE+PF.
由此得到結(jié)論:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.
閱讀上面的材料,然后解答下面的問題:
(1)針對小明或小穎的思路方法,請選擇倆人中的一種方法把證明過程補(bǔ)充完整
(2)如圖3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一點(diǎn),EM⊥BD于M,EN⊥AC于N,試?yán)蒙鲜鼋Y(jié)論
求EM+EN的值.
精英家教網(wǎng)

查看答案和解析>>

閱讀理解題:
已知:如圖,△ABC中,AB=AC,P是底邊BC上的任一點(diǎn)(不與B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求證:CD=PE+PF.
在解答這個問題時,小明與小穎的思路方法分別如下:
小明的思路方法是:過點(diǎn)P作PG⊥CD于G(如圖1),則可證得四邊形PEDG是矩形,也可證得△PCG≌△CPF,從而得到PE=DG,PF=CG,因此得CD=PE+PF.
小穎的思路方法是:連接PA(如圖2),則S△ABC=S△PAB+S△PAC,再由三角形的面積公式便可證得CD=PE+PF.
由此得到結(jié)論:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.
閱讀上面的材料,然后解答下面的問題:
(1)針對小明或小穎的思路方法,請選擇倆人中的一種方法把證明過程補(bǔ)充完整
(2)如圖3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一點(diǎn),EM⊥BD于M,EN⊥AC于N,試?yán)蒙鲜鼋Y(jié)論
求EM+EN的值.

查看答案和解析>>

閱讀理解題:
已知:如圖,△ABC中,AB=AC,P是底邊BC上的任一點(diǎn)(不與B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求證:CD=PE+PF.
在解答這個問題時,小明與小穎的思路方法分別如下:
小明的思路方法是:過點(diǎn)P作PG⊥CD于G(如圖1),則可證得四邊形PEDG是矩形,也可證得△PCG≌△CPF,從而得到PE=DG,PF=CG,因此得CD=PE+PF.
小穎的思路方法是:連接PA(如圖2),則S△ABC=S△PAB+S△PAC,再由三角形的面積公式便可證得CD=PE+PF.
由此得到結(jié)論:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.
閱讀上面的材料,然后解答下面的問題:
(1)針對小明或小穎的思路方法,請選擇倆人中的一種方法把證明過程補(bǔ)充完整
(2)如圖3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一點(diǎn),EM⊥BD于M,EN⊥AC于N,試?yán)蒙鲜鼋Y(jié)論
求EM+EN的值.

查看答案和解析>>

閱讀下列材料,按要求解答問題。

1)觀察下面兩塊三角尺,它們有一個共同的性質(zhì):∠A2B,我們由此出發(fā)來進(jìn)

行思考。

在圖(1)中,作斜邊AB上的高CD,由于∠B30°,可知c2b,于是AD,

BDc。由于△CDB∽△ACB,可知,即a2BD。

同理b2c·AD。于是a2b2cBDAD)=c[(c]=ccb

c2bb

bc。對于圖(2),由勾股定理有a2b2c2,由于bc,故有a2b2bc。

這兩塊三角尺都具有性質(zhì)a2b2bc。

在△ABC中,如果一個內(nèi)角等于另一個內(nèi)角的2倍,我們就稱這種三角形為倍角三角   

形。兩塊三角尺就都是特殊的倍角三角形。對于任意的倍角三角形,上面的性質(zhì)仍然

成立嗎?暫時把我們的設(shè)想作為一個猜測:

如圖(3),在△ABC中,若∠CAB2ABC,則a2b2bc

在上述由三角尺的性質(zhì)到猜想這一認(rèn)識過程中,用到了下列四種數(shù)學(xué)思想方法中的哪  

一種?選出一個正確的并將其序號填在括號內(nèi)………………………………………( 

①分類的思想方法  ②轉(zhuǎn)化的思想方法  ③由特殊到一般的思想方法  ④數(shù)形結(jié)合的

思想方法

2)這個猜測是否正確?請證明。

 

查看答案和解析>>

精英家教網(wǎng)幾何模型:條件:如圖,A、B是直線l同旁的兩個定點(diǎn).
問題:在直線l上確定一點(diǎn)P,使PA+PB的值最小.
方法:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,
由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點(diǎn),P是AC上一動點(diǎn).則PB+PE的最小值是
 

(2)如圖2,∠AOB=45°,P是∠AOB內(nèi)一定點(diǎn),PO=10,Q、R分別是OA、OB上的動點(diǎn),求△PQR周長的最小值.(要求畫出示意圖,寫出解題過程)
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案