③當(dāng)PC=PQ時.過P作于D.則 查看更多

 

題目列表(包括答案和解析)

如圖,邊長為1的正方形ABCD中,以A為圓心,1為半徑作數(shù)學(xué)公式,將一塊直角三角板的直角頂點P放置在數(shù)學(xué)公式(不包括端點B、D)上滑動,一條直角邊通過頂點A,另一條直角邊與邊BC相交于點Q,連接PC,并設(shè)PQ=x,以下我們對△CPQ進(jìn)行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說明理由;
(2)求△CPQ周長的最小值;
(3)當(dāng)△CPQ分別為銳角三角形、直角三角形和鈍角三角形時分別求x的取值范圍.

查看答案和解析>>

如圖,邊長為1的正方形ABCD中,以A為圓心,1為半徑作,將一塊直角三角板的直角頂點P放置在(不包括端點B、D)上滑動,一條直角邊通過頂點A,另一條直角邊與邊BC相交于點Q,連接PC,并設(shè)PQ=x,以下我們對△CPQ進(jìn)行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說明理由;
(2)求△CPQ周長的最小值;
(3)當(dāng)△CPQ分別為銳角三角形、直角三角形和鈍角三角形時分別求x的取值范圍.

查看答案和解析>>

如圖,邊長為1的正方形ABCD中,以A為圓心,1為半徑作,將一塊直角三角板的直角頂點P放置在(不包括端點B、D)上滑動,一條直角邊通過頂點A,另一條直角邊與邊BC相交于點Q,連接PC,并設(shè)PQ=x,以下我們對△CPQ進(jìn)行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說明理由;
(2)求△CPQ周長的最小值;
(3)當(dāng)△CPQ分別為銳角三角形、直角三角形和鈍角三角形時分別求x的取值范圍.

查看答案和解析>>

如圖,邊長為1的正方形ABCD中,以A為圓心,1為半徑作,將一塊直角三角板的直角頂點P放置在(不包括端點B、D)上滑動,一條直角邊通過頂點A,另一條直角邊與邊BC相交于點Q,連接PC,并設(shè)PQ=x,以下我們對△CPQ進(jìn)行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說明理由;
(2)求△CPQ周長的最小值;
(3)當(dāng)△CPQ分別為銳角三角形、直角三角形和鈍角三角形時分別求x的取值范圍.

查看答案和解析>>

根據(jù)所給的基本材料,請你進(jìn)行適當(dāng)?shù)奶幚恚帉懸坏谰C合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運(yùn)動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運(yùn)動,速度為2cm/s;連接PQ,設(shè)運(yùn)動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>


同步練習(xí)冊答案