如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分
別在y軸的負(fù)半軸和x軸的正半軸上,拋物線(xiàn)y=ax
2+bx+c經(jīng)過(guò)點(diǎn)A、B和D
(4,-).
(1)求拋物線(xiàn)的解析式.
(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同
時(shí)點(diǎn)Q由點(diǎn)B出發(fā)沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ
2(cm
2)
①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
②當(dāng)S取
時(shí),在拋物線(xiàn)上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).