將點(diǎn)的坐標(biāo)代入.可得.解得. 查看更多

 

題目列表(包括答案和解析)

閱讀理解題.

閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.

例如:由拋物線y=x2-2mx+m2+2m-1, 、

有y=(x-m)2+2m-1.          ②

∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),

當(dāng)m的值變化時(shí),x、y的值也隨之變化,因而y值也隨x值的變化而變化.

將③代入④,得y=2x-1.         ⑤

可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式:y=2x-1.

解答問題:

(1)在上述過程中,由①到②所用的數(shù)學(xué)方法是________,其中運(yùn)用了________公式;

由③、④得到⑤所用的數(shù)學(xué)方法是________.

(2)根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y橫坐標(biāo)x之間的關(guān)系式.

查看答案和解析>>

閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當(dāng)m的值變化時(shí),頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實(shí)數(shù)時(shí),拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是
 
,其中運(yùn)用的公式是
 
.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是
 

②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實(shí)數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當(dāng)m的值變化時(shí),頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實(shí)數(shù)時(shí),拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是______,其中運(yùn)用的公式是______.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是______.
②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實(shí)數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

閱讀材料:

當(dāng)拋物線的關(guān)系式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1,①

y=(x-m)2+2m-1.

當(dāng)m的值變化時(shí),xy的值也隨之變化,因而y值也隨x值的變化而變化.將③代入④,得y=2x-1 ⑤.可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式y=2x-1

解答問題:(1)在上述過程中,由①到②所用的數(shù)學(xué)方法是                           .其中運(yùn)用了          公式;由③④得到⑤所用的數(shù)學(xué)方法是                     .

2)根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式.

查看答案和解析>>

當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
x0=m  (3)
y0=2m-1  (4)

∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:
當(dāng)m的值變化時(shí),頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實(shí)數(shù)時(shí),拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x-1.
根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.

查看答案和解析>>


同步練習(xí)冊答案