∴ . 解得OB′=12.即點B′ 的坐標為.(2)將紙片翻折后.點B恰好落在x軸上的B′ 點.CE為折痕.∴ △CBE≌△CB′E.故BE=B′E.CB′=CB=OA. 查看更多

 

題目列表(包括答案和解析)

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0  

查看答案和解析>>

(10分)閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,

解得y1=1,y2=4.當y=1時,x2-1=1,

∴x2=2,

∴x=±;當y=4時,x2-1=4,

∴x2=5,

∴x=±,

故原方程的解為  x1,x2=-,x3,x4=-

上述解題方法叫做換元法;

請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

 

查看答案和解析>>

(10分)閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,
解得y1=1,y2=4.當y=1時,x2-1=1,
∴x2=2,
∴x=±;當y=4時,x2-1=4,
∴x2=5,
∴x=±
故原方程的解為  x1,x2=-,x3,x4=-
上述解題方法叫做換元法;
請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

查看答案和解析>>


同步練習(xí)冊答案