③選擇點(diǎn)時(shí).類似①的求法.可得直線的解析式為. 21.某商場欲購進(jìn)A.B兩種品牌的飲料500箱.此兩種飲料每箱的進(jìn)價(jià)和售價(jià)如下表所示.設(shè)購進(jìn)A種飲料x箱.且所購進(jìn)的兩種飲料能全部賣出.獲得的總利潤為y元.⑴求y關(guān)于x的函數(shù)關(guān)系式?⑵如果購進(jìn)兩種飲料的總費(fèi)用不超過20000元.那么該商場如何進(jìn)貨才能獲利最多?并求出最大利潤.品牌AB進(jìn)價(jià)5535售價(jià)6340解:⑴y==2x+2500.即y=2x+2500.⑵由題意.得55x+35≤20000.解這個(gè)不等式.得x≤125.∴當(dāng)x=125時(shí),y最大值=3×12+2500=2875(元),∴該商場購進(jìn)A.B兩種品牌的飲料分別為125箱.375箱時(shí).能獲得最大利潤2875元. 22.(2008 浙江 麗水)為了促進(jìn)長三角區(qū)域的便捷溝通.實(shí)現(xiàn)節(jié)時(shí).節(jié)能.杭州灣跨海大橋于今年5月1日通車.下表是寧波到上海兩條線路的有關(guān)數(shù)據(jù):線路彎路直路路程316公里196公里過路費(fèi)140元180元(1)若小車的平均速度為80公里/小時(shí).則小車走直路比走彎路節(jié)省多少時(shí)間? 查看更多

 

題目列表(包括答案和解析)

閱讀下列材料并填空。平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線上,過這些點(diǎn)作直線,一共能作出多少條不同的直線?

(1)分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線……

(2)歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線的條數(shù)發(fā)現(xiàn):如下表

點(diǎn)的個(gè)數(shù)

可作出直線條數(shù)

2

1=

3

3=

4

6=

5

10=

……

……

n

(3)推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線。取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2;即

(4)結(jié)論:

試探究以下幾個(gè)問題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線上,過任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?

(1)分析:

當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出       個(gè)三角形;

    當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出       個(gè)三角形;

    當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出       個(gè)三角形;

……

(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù),發(fā)現(xiàn):(填下表)

點(diǎn)的個(gè)數(shù)

可連成三角形個(gè)數(shù)

3

 

4

 

5

 

……

 

n

 

(3)推理:                              (4)結(jié)論:

 

查看答案和解析>>

、閱讀下列材料并填空。平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線上,過這些點(diǎn)作直線,一共能作出多少條不同的直線?

①分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線……

②歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線的條數(shù)發(fā)現(xiàn):如下表

點(diǎn)的個(gè)數(shù)

可作出直線條數(shù)

2

1=

3

3=

4

6=

5

10=

……

……

n

③推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線。取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2;即

④結(jié)論:

試探究以下幾個(gè)問題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線上,過任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?

(1)分析:

當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出       個(gè)三角形;

    當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出       個(gè)三角形;

    當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出       個(gè)三角形;

……

(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù),發(fā)現(xiàn):(填下表)

點(diǎn)的個(gè)數(shù)

可連成三角形個(gè)數(shù)

3

 

4

 

5

 

……

 

n

 

 

(3)推理:                              

 

(4)結(jié)論:

 

 

查看答案和解析>>

閱讀下列材料并填空.
平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線上,過其中的每兩點(diǎn)畫直線,一共能作出多少條不同的直線?
①分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線;當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線;當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線;當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線…
②歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線的條數(shù)Sn發(fā)現(xiàn):如下表
點(diǎn)的個(gè)數(shù)可作出直線條數(shù)
21=S2=
33=S3=
46=S4=
510=S5=
nSn=
③推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線.取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2;即Sn=④結(jié)論:Sn=試探究以下幾個(gè)問題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線上,過任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出______個(gè)三角形;
當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出______個(gè)三角形;
當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出______個(gè)三角形;

(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù)Sn,發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù)可連成三角形個(gè)數(shù)
3
4
5
n
(3)推理:
(4)結(jié)論:

查看答案和解析>>

如圖2,

請根據(jù)圖中給出的信息,可得正確的方程是( 。

A、π×x=π××(x+5)    B、π×x=π××(x-5)

C、π×82×x=π×62×(x+5)       D、π×82×x=π×62×5

 

查看答案和解析>>

請根據(jù)圖中給出的信息,可得正確的方程是(     )

A. 

B.

C.            

D.

 

查看答案和解析>>


同步練習(xí)冊答案