.直線(xiàn)的方程:.令得.由已知可得即化簡(jiǎn)得解之得 . 查看更多

 

題目列表(包括答案和解析)

如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,OA=4,AB=8,直線(xiàn)y=
12
x+3
與x軸、y軸分別交于E和F,D是CB的中點(diǎn),G是線(xiàn)段EF(包括端點(diǎn))上的一點(diǎn),且GH⊥AB.
(1)由已知可得,點(diǎn)D的坐標(biāo)為
 
;
(2)設(shè)點(diǎn)G的橫坐標(biāo)為x,四邊形GHBD的面積為S,求S關(guān)于x的函數(shù)表達(dá)式,并注明x的取值范圍;
(3)①若點(diǎn)G在直線(xiàn)EF上移動(dòng),是否存在這樣的點(diǎn)G,使D、C、G三點(diǎn)構(gòu)成的三角形為等腰三角形?若存在,請(qǐng)求出點(diǎn)G的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
②若點(diǎn)G在線(xiàn)段EF上移動(dòng),求當(dāng)以GD為直徑的⊙M與AB相切時(shí),四邊形GH精英家教網(wǎng)BD的面積.

查看答案和解析>>

根據(jù)一元二次方程根的定義,解答下列問(wèn)題.
一個(gè)三角形兩邊長(zhǎng)分別為3cm和7cm,第三邊長(zhǎng)為a cm,且整數(shù)a滿(mǎn)足a2-10a+21=0,求三角形的周長(zhǎng).
解:由已知可得4<a<10,則a可取5,6,7,8,9.(第一步)
當(dāng)a=5時(shí),代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周長(zhǎng)是3+7+7=17(cm).
上述過(guò)程中,第一步是根據(jù)
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
,第二步應(yīng)用了
分類(lèi)討論
分類(lèi)討論
數(shù)學(xué)思想,確定a的值的大小是根據(jù)
方程根的定義
方程根的定義

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,矩形ABCO的面積為15,邊OA比OC大2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D點(diǎn),過(guò)點(diǎn)D作DF⊥AE于F.
(1)求OA,OC的長(zhǎng); 
(2)求證:DF為⊙O′的切線(xiàn);
(3)由已知可得,△AOE是等腰三角形.那么在直線(xiàn)BC上是否存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形?如果存在,請(qǐng)你證明點(diǎn)P與⊙O′的位置關(guān)系,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D點(diǎn),過(guò)點(diǎn)D作DF⊥AE于F.

(1) 求OA,OC的長(zhǎng);

(2) 求證:DF為⊙O′的切線(xiàn);

(3)由已知可得,△AOE是等腰三角形.那么在直線(xiàn)BC上是否存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形?如果存在,請(qǐng)你證明點(diǎn)P與⊙O′的位置關(guān)系,如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D點(diǎn),過(guò)點(diǎn)D作DF⊥AE于F.

(1) 求OA,OC的長(zhǎng);
(2) 求證:DF為⊙O′的切線(xiàn);
(3)由已知可得,△AOE是等腰三角形.那么在直線(xiàn)BC上是否存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形?如果存在,請(qǐng)你證明點(diǎn)P與⊙O′的位置關(guān)系,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案