(Ⅱ)求點到平面的距離.解法一: 查看更多

 

題目列表(包括答案和解析)

如圖,在三棱錐中,平面平面,,中點.(Ⅰ)求點B到平面的距離;(Ⅱ)求二面角的余弦值.

【解析】第一問中利用因為,中點,所以

而平面平面,所以平面,再由題設條件知道可以分別以、,, 軸建立直角坐標系得,,,

故平面的法向量,故點B到平面的距離

第二問中,由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

解:(Ⅰ)因為,中點,所以

而平面平面,所以平面

  再由題設條件知道可以分別以、、,, 軸建立直角坐標系,得,,,

,,故平面的法向量

,故點B到平面的距離

(Ⅱ)由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

 

查看答案和解析>>

(2007•浦東新區(qū)二模)已知拋物線C:y2=2px(p>0)上橫坐標為4的點到焦點的距離為5.
(1)求拋物線C的方程.
(2)設直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中點,過M作平行于x軸的直線交拋物線C于點D,得到△ABD;再分別過弦AD、BD的中點作平行于x軸的直線依次交拋物線C于點E,F(xiàn),得到△ADE和△BDF;按此方法繼續(xù)下去.
解決下列問題:
①求證:a2=
16(1-kb)k2

②計算△ABD的面積S△ABD;
③根據(jù)△ABD的面積S△ABD的計算結(jié)果,寫出△ADE,△BDF的面積;請設計一種求拋物線C與線段AB所圍成封閉圖形面積的方法,并求出此封閉圖形的面積.

查看答案和解析>>


同步練習冊答案