題目列表(包括答案和解析)
已知正四棱柱中 ,,,為的中點,則直線與平面的距離為
(A) (B) (C) (D)
【解析】連結(jié)交于點,連結(jié),因為是中點,所以,且,所以,即直線 與平面BED的距離等于點C到平面BED的距離,過C做于,則即為所求距離.因為底面邊長為2,高為,所以,,,所以利用等積法得,選D.
如圖,在三棱錐中,平面平面,,,,為中點.(Ⅰ)求點B到平面的距離;(Ⅱ)求二面角的余弦值.
【解析】第一問中利用因為,為中點,所以
而平面平面,所以平面,再由題設條件知道可以分別以、、為,, 軸建立直角坐標系得,,,,,,
故平面的法向量而,故點B到平面的距離
第二問中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因為,為中點,所以
而平面平面,所以平面,
再由題設條件知道可以分別以、、為,, 軸建立直角坐標系,得,,,,
,,故平面的法向量
而,故點B到平面的距離
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com