題目列表(包括答案和解析)
(本小題滿分14分)
已知數(shù)列,其中為實(shí)數(shù),為正整數(shù).
(Ⅰ)證明:當(dāng)
(Ⅱ)設(shè)為數(shù)列的前n項和,是否存在實(shí)數(shù),使得對任意正整數(shù)n,都有 若存在,求的取值范圍;若不存在,說明理由.
(08年湖北卷文)(本小題滿分14分)
已知數(shù)列,其中為實(shí)數(shù),為正整數(shù).
(Ⅰ)證明:當(dāng)
(Ⅱ)設(shè)為數(shù)列的前n項和,是否存在實(shí)數(shù),使得對任意正整數(shù)n,都有
若存在,求的取值范圍;若不存在,說明理由.
(本小題滿分14分)
已知數(shù)列,其中為實(shí)數(shù),為正整數(shù).
(Ⅰ)證明:當(dāng)
(Ⅱ)設(shè)為數(shù)列的前n項和,是否存在實(shí)數(shù),使得對任意正整數(shù)n,都有 若存在,求的取值范圍;若不存在,說明理由.
(本小題滿分14分)
設(shè)函數(shù)
(Ⅰ)若函數(shù)的定義域為,求的值域;
(Ⅱ)若定義域為[a,a+1]時,的值域是,求實(shí)數(shù)a的值。
.(本小題滿分14分)已知等比數(shù)列的公比為,首項為,其前項的和為.?dāng)?shù)列的前項的和為, 數(shù)列的前項的和為
(Ⅰ)若,,求的通項公式;(Ⅱ)①當(dāng)為奇數(shù)時,比較與的大; ②當(dāng)為偶數(shù)時,若,問是否存在常數(shù)(與n無關(guān)),使得等式恒成立,若存在,求出的值;若不存在,說明理由
一、選擇題 ACCBC BBCCD
二、填空題:,,,,,,①②④
18(Ⅰ)由題意“且”表示“答完題,第一題答對,第二題答錯;或第一題答對,第二題也答對” 此時概率 …6分
(Ⅱ)P()==, P()==,………9分
-3
-1
1
3
P()== , P()==
∴的分布列為
12分
∴ ……14分
19解:(Ⅰ) 連接交于點(diǎn),連接.
在中,分別為中點(diǎn),.
平面,平面,平面. …………(6分)
(Ⅱ) 法一:過作于,由三垂線定理得,
故∠為二面角的平面角. ……………………………………(9分)
令,則,又,
在△中,,
解得。
當(dāng)時,二面角的正弦值為. ………………(14分)
法二:設(shè),取中點(diǎn),連接,
以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如右圖所示:
則,
則.
設(shè)平面的法向量為,平面的法向量為,
則有,,即,,
設(shè),則,
,解得.
即當(dāng)時,二面角的正弦值為. …………………(14分)
20.(1) ;
(2)軌跡方程為()
(1)當(dāng)時,軌跡方程為(),表示拋物線弧段。
(2)當(dāng)時,軌跡方程為,
A)當(dāng)表示橢圓弧段; B)當(dāng)時表示雙曲線弧段。
21. Ⅰ) …………(2分)
令,則
當(dāng)時,;當(dāng)時
故有極大值…………(4分)
Ⅱ)∵=a+,x∈(0,e),∈[,+∞
(1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).
∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………7分
(2)若a<-, >
由a+<0,即-<x≤e.
∴f(x)=f(-)=-1+ln(-).
令-1+ln(-)=-3,則ln(-)=-2.∴-=e,
即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………10分
Ⅲ)由Ⅰ)結(jié)論,=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.
令g(x)=|f(x)|--=x-lnx--=x-(1+)lnx-……12分
(1)當(dāng)0<x<2時,有g(shù)(x)≥x-(1+)(x-1)-=->0.
(2)當(dāng)x≥2時,g′(x)=1-[(-)lnx+(1+)?]=
=.
∴g(x)在[2,+∞上增函數(shù),∴g(x)≥g(2)=
綜合(1)、(2)知,當(dāng)x>0時,g(x)>0,即|f(x)|>.
故原方程沒有實(shí)解. ………………………………16分
22.證明:(I)
①當(dāng), …………2分
②假設(shè),
則時不等式也成立, …………4分
(II)由,
由
…………5分
又 …………7分
…………8分
(III),
, …………10分
的等比數(shù)列,…………12分
…………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com