14.已知拋物線.過焦點且垂直于對稱軸的直線與拋物線交于A.B兩個點.則坐標原點與A.B兩點構(gòu)成的三角形的面積為 . 查看更多

 

題目列表(包括答案和解析)

已知拋物線y2=4x的焦點為F2,點F1與F2關(guān)于坐標原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且
F1P
F2Q
=-5

(1)求點T的橫坐標x0;
(2)若以F1,F(xiàn)2為焦點的橢圓C過點(1,
2
2
)

①求橢圓C的標準方程;
②過點F2作直線l與橢圓C交于A,B兩點,求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

已知拋物線C1、橢圓C2和雙曲線C3在x軸上有共同的焦點,且三條曲線都經(jīng)過點M(1,2),C1的頂點為坐標原點,C2、C3的對稱軸是坐標軸.
(1)求這三條曲線的方程
(2)已知動直線l過點P(3,0),交拋物線C1于A、B兩點,問是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長為定值?若存在,求出l′的方程;若不存在,說明理由.

查看答案和解析>>

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且.

(1)求點T的橫坐標

(2)若以F1,F2為焦點的橢圓C過點.

①求橢圓C的標準方程;

②過點F2作直線l與橢圓C交于A,B兩點,求的取值范圍.

 

查看答案和解析>>

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標原點對稱,直線m垂直于軸(垂足為T),與拋物線交于不同的兩點P、Q,且.

(Ⅰ)求點T的橫坐標

(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.

① 求橢圓C的標準方程;

② 過點F2作直線l與橢圓C交于A,B兩點,設,若的取值范圍.

 

查看答案和解析>>

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標原點對稱,直線m垂直于x軸(垂足為T),與拋物線交于不同的兩點P,Q且.
(I)求點T的橫坐標;
(II)若以F1,F2為焦點的橢圓C過點.
①求橢圓C的標準方程;
②過點F2作直線l與橢圓C交于A,B兩點,設,若的取值范圍.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DCCBD    6―10 ACBBB

二、填空題:本大題共4小題,每小題4分,共16分。

11.1200    12.―3    13.e    14.2    15.16

三、解答題:本大題共6小題,共80分。解答應寫出文字說明、證明過程或演算步驟。

16.(本小題滿分13分)

解:(I)由已知

   (II)

 

   (I)證明:(1)連接CD1

∵四棱柱ABCD―A1B1C1D1中,底面ABCD是菱形

∴A1D1//AD,AD//BC,A1D1=AD,AD=BC;

∴A1D1//BC,A1D1=BC,

∴四邊形A1BCD1為平行四邊形;∴A1B//D1C………3分

∵點E、F分別是棱CC1、C1D1的中點;∴EF//D1C

又∴EF//A1B

又∵A1B平面A1DB,EF面A1DB;

∴EF⊥平面A1BD  ………………6分

   (II)連結(jié)AC交BD于點G,連接A1G,EG

∵四棱柱ABCD―A1B1C1D1中,A1A⊥底面ABCD,

底面ABCD是菱形

∴AA1⊥AB,AA1⊥AD,EC⊥BC,EC⊥DC,

AD=AB,BC=CD

∵底面ABCD是菱形,∴點G為BD中點,

∴A1G⊥BD,EG⊥BD

∴∠A1GE為直二面角A1―BD―E的平面角,

∴∠A1GE=90°………………3分

在棱形ABCD中,∠DAB=60°,AB=2,

∴∠ABC=120°,

∴AC=

∴AG=GC=  ………………10分

在面ACC1A1中,△AGA1,△GCE為直角三角形

∵∠A1GE=90°∴∠EGC+∠A1GA=90°,∴∠EGC=∠AA1G

∴Rt△A1AG∽Rt△ECG ………………12分

解法二:

   (I)證明:取AB的中點G,連接GD

∵底面ABCD是菱形,∠DAB=60°,AB=2

∴△ABD是正三角形,∴DG⊥AB,DG=

又∵AB//CD,∴DG⊥DC   …………2分

∵四棱柱ABCD―A1B1C1D1為直四棱柱,AA1//DD1

A1A⊥底面ABCD,∴DD1⊥底面ABCD

以D為坐標原點,射線DG為x軸的正半軸,射線DC為y軸的正半軸,

建立如圖所示空間直角坐標系D―xyz.

18.解:(I)擲一枚硬幣三次,列出所有可能情況共8種:

   (上上上),(上上下),(上下上),(上下下),(下上上),(下上下),(下下上),(下下下);

    其中甲得2分、乙得1分的有3種,故所求概率  …………3分

   (II)在題設條件下,至多還要2局,情形一:在第四局,硬幣正面朝上,則甲積3分、乙積1分,甲獲勝,概率為1/2;情形二:在第四局,硬幣正面朝下,第五局硬幣正面朝上,則甲積3分、乙積2分,甲獲勝,概率為1/4。由加法公式,甲獲勝的概率為1/2+1/4=3/4。   ………………8分

   (III)據(jù)題意,ξ的取值為3、4、5,

    且   ………………11分

   

    其分布列如下:

ξ

3

4

5

P

1/4

3/8

3/8

       ………………13分

19.解:(I)∵F1,F(xiàn)2三等份BD, …………1分

       ………………3分

   (II)由(I)知為BF2的中點,

   

   (III)依題意直線AC的斜率存在,

 

      • <rp id="sjjfm"></rp>

            同理可求

           

           (III)法二:

           

        20.(I)解:

           (II)切線l與曲線有且只有一個公共點等價

        的唯一解;  ………………7分

         

         

        x

        (―1,0)

        0

        +

        0

        0

        +

        極大值0

        極小值

        x

        0

        +

        0

        0

        +

        極大值

        極小值0

           (III)

        21.(I)由已知BA=  ………………2分

        任取曲線

        則有=,即有  ………………5分

          ………………6分

           …………①   與   ………………②

        比較①②得

           (II)設圓C上的任意一點的極坐標,過OC的直徑的另一端點為B,

        邊PO,PB則在直角三角形OPB中, …………5分

        (寫不扣分)

        從而有   ………………7分

           (III)證:為定值,

        利用柯西不等式得到

        ………5分

         


        同步練習冊答案