21.選做題:本題有三個選答題.每題7分.請考生任選2題作答.滿分14分.如果多做.則按所做的前兩題記分. (I)選修4―2:短陣與變換 查看更多

 

題目列表(包括答案和解析)

本題有(I)、(II)、(III)三個選作題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知a∈R,矩陣P=
02
-10
,Q=
01
a0
,若矩陣PQ對應的變換把直線l1:x-y+4=0變?yōu)橹本l2:x+y+4=0,求實數(shù)a的值.
(2)選修4-4:坐標系與參數(shù)方程
在極坐標系中,求圓C:ρ=2上的點P到直線l:ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5:不等式選講
已知實數(shù)x,y滿足x2+4y2=a(a>0),且x+y的最大值為5,求實數(shù)a的值.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點Q極坐標為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
(I)關于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩陣M的特征值λ1、λ2和特征向量
ξ
1
ξ2
;
(II)求M6
ξ
的值.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)選修4-5:不等式選講
(Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值和特征向量;
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m   
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-2:矩陣與變換

已知矩陣,向量

    (I)求矩陣的特征值、和特征向量;

(II)求的值.

 

 

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為

(Ⅰ)求直線l的直角坐標方程;

(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.

 

 

(3)(本小題滿分7分)選修4-5:不等式選講

(Ⅰ)已知:a、b、;www.7caiedu.cn   

(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

 

 

 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DCCBD    6―10 ACBBB

二、填空題:本大題共4小題,每小題4分,共16分。

11.1200    12.―3    13.e    14.2    15.16

三、解答題:本大題共6小題,共80分。解答應寫出文字說明、證明過程或演算步驟。

16.(本小題滿分13分)

解:(I)由已知

   (II)

 

   (I)證明:(1)連接CD1

∵四棱柱ABCD―A1B1C1D1中,底面ABCD是菱形

∴A1D1//AD,AD//BC,A1D1=AD,AD=BC;

∴A1D1//BC,A1D1=BC,

∴四邊形A1BCD1為平行四邊形;∴A1B//D1C………3分

∵點E、F分別是棱CC1、C1D1的中點;∴EF//D1C

又∴EF//A1B

又∵A1B平面A1DB,EF面A1DB;

∴EF⊥平面A1BD  ………………6分

   (II)連結AC交BD于點G,連接A1G,EG

∵四棱柱ABCD―A1B1C1D1中,A1A⊥底面ABCD,

底面ABCD是菱形

∴AA1⊥AB,AA1⊥AD,EC⊥BC,EC⊥DC,

AD=AB,BC=CD

∵底面ABCD是菱形,∴點G為BD中點,

∴A1G⊥BD,EG⊥BD

∴∠A1GE為直二面角A1―BD―E的平面角,

∴∠A1GE=90°………………3分

在棱形ABCD中,∠DAB=60°,AB=2,

∴∠ABC=120°,

∴AC=

∴AG=GC=  ………………10分

在面ACC1A1中,△AGA1,△GCE為直角三角形

∵∠A1GE=90°∴∠EGC+∠A1GA=90°,∴∠EGC=∠AA1G,

∴Rt△A1AG∽Rt△ECG ………………12分

解法二:

   (I)證明:取AB的中點G,連接GD

∵底面ABCD是菱形,∠DAB=60°,AB=2

∴△ABD是正三角形,∴DG⊥AB,DG=

又∵AB//CD,∴DG⊥DC   …………2分

∵四棱柱ABCD―A1B1C1D1為直四棱柱,AA1//DD1

A1A⊥底面ABCD,∴DD1⊥底面ABCD

以D為坐標原點,射線DG為x軸的正半軸,射線DC為y軸的正半軸,

建立如圖所示空間直角坐標系D―xyz.

18.解:(I)擲一枚硬幣三次,列出所有可能情況共8種:

   (上上上),(上上下),(上下上),(上下下),(下上上),(下上下),(下下上),(下下下);

    其中甲得2分、乙得1分的有3種,故所求概率  …………3分

   (II)在題設條件下,至多還要2局,情形一:在第四局,硬幣正面朝上,則甲積3分、乙積1分,甲獲勝,概率為1/2;情形二:在第四局,硬幣正面朝下,第五局硬幣正面朝上,則甲積3分、乙積2分,甲獲勝,概率為1/4。由加法公式,甲獲勝的概率為1/2+1/4=3/4。   ………………8分

   (III)據(jù)題意,ξ的取值為3、4、5,

    且   ………………11分

   

    其分布列如下:

ξ

3

4

5

P

1/4

3/8

3/8

       ………………13分

19.解:(I)∵F1,F(xiàn)2三等份BD, …………1分

       ………………3分

   (II)由(I)知為BF2的中點,

   

   (III)依題意直線AC的斜率存在,

 

          同理可求

         

         (III)法二:

         

      20.(I)解:

         (II)切線l與曲線有且只有一個公共點等價

      的唯一解;  ………………7分

       

       

      x

      (―1,0)

      0

      +

      0

      0

      +

      極大值0

      極小值

      x

      0

      +

      0

      0

      +

      極大值

      極小值0

         (III)

      21.(I)由已知BA=  ………………2分

      任取曲線

      則有=,即有  ………………5分

        ………………6分

         …………①   與   ………………②

      比較①②得

         (II)設圓C上的任意一點的極坐標,過OC的直徑的另一端點為B,

      邊PO,PB則在直角三角形OPB中, …………5分

      (寫不扣分)

      從而有   ………………7分

         (III)證:為定值,

      利用柯西不等式得到

      ………5分

       


      同步練習冊答案