題目列表(包括答案和解析)
閱讀下面的文言文,完成下面5題。
李斯論 (清)姚鼐
蘇子瞻謂李斯以荀卿之學(xué)亂天下,是不然。秦之亂天下之法,無待于李斯,斯亦未嘗以其學(xué)事秦。
|
君子之仕也,進(jìn)不隱賢;小人之仕也,無論所學(xué)識(shí)非也,即有學(xué)識(shí)甚當(dāng),見其君國行事,悖謬無義,疾首嚬蹙于私家之居,而矜夸導(dǎo)譽(yù)于朝庭之上,知其不義而勸為之者,謂天下將諒我之無可奈何于吾君,而不吾罪也;知其將喪國家而為之者,謂當(dāng)吾身容可以免也。且夫小人雖明知世之將亂,而終不以易目前之富貴,而以富貴之謀,貽天下之亂,固有終身安享榮樂,禍遺后人,而彼宴然①無與者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之誅惡人,亦有時(shí)而信也邪!
且夫人有為善而受教于人者矣,未聞為惡而必受教于人者也。荀卿述先王而頌言儒效,雖間有得失,而大體得治世之要。而蘇氏以李斯之害天下罪及于卿,不亦遠(yuǎn)乎?行其學(xué)而害秦者,商鞅也;舍其學(xué)而害秦者,李斯也。商君禁游宦,而李斯諫逐客②,其始之不同術(shù)也,而卒出于同者,豈其本志哉!宋之世,王介甫以平生所學(xué),建熙寧新法,其后章惇、曾布、張商英、蔡京之倫,曷嘗學(xué)介甫之學(xué)耶?而以介甫之政促亡宋,與李斯事頗相類。夫世言法術(shù)之學(xué)足亡人國,固也。吾謂人臣善探其君之隱,一以委曲變化從世好者,其為人尤可畏哉!尤可畏哉!
[注釋]①宴然:安閑的樣子。②諫逐客:秦始皇曾發(fā)布逐客令,驅(qū)逐六國來到秦國做官的人,李斯寫了著名的《諫逐客書》,提出了反對意見。
對下列句子中加點(diǎn)的詞語的解釋,不正確的一項(xiàng)是( )
A.非是不足以中侈君張吾之寵 中:符合
B.滅三代法而尚督責(zé) 尚:崇尚
C.知其不義而勸為之者 勸:鼓勵(lì)
D.而終不以易目前之富貴 易:交換
下列各組句子中,加點(diǎn)的詞的意義和用法相同的一組是( )
A.因秦國地形便利 不如因普遇之
B.設(shè)所遭值非始皇、二世 非其身之所種則不食
C.且夫小人雖明知世之將亂 臣死且不避,卮酒安足辭
D.不亦遠(yuǎn)乎 王之好樂甚,則齊國其庶幾乎
下列各項(xiàng)中,加點(diǎn)詞語與現(xiàn)代漢語意義不相同的一項(xiàng)是( )
A.小人之仕也,無論所學(xué)識(shí)非也
B.而大體得治世之要
C.而以富貴之謀,貽天下之亂
D.一以委曲變化從世好者
下列各句中對文章的闡述,不正確的一項(xiàng)是( )
A.蘇軾認(rèn)為李斯以荀卿之學(xué)輔佐秦朝行暴政,致使天下大亂,作者則認(rèn)為李斯是完全舍棄了荀子的說學(xué),李斯的做法只不過是追隨時(shí)勢罷了。
B.作者由論李斯事秦進(jìn)而泛論人臣事君的問題,強(qiáng)調(diào)為臣者對于國君的“悖謬無義”之政,不應(yīng)為自身的富貴而阿附甚至助長之。
C.此文主旨在于指出秦行暴政是君王自身的原因,作者所論的不可“趨時(shí)”,“中侈君張吾之寵”的道理,在今天仍有借鑒意義。
D.文章開門見山,擺出蘇軾的觀點(diǎn),然后通過對秦國發(fā)展歷史的分析,駁斥了蘇說的謬論,提出了自己的見解。論證嚴(yán)密,逐層深入,是一篇典范的史論。
把文言文閱讀材料中畫橫線的句子翻譯成現(xiàn)代漢語。
(1)秦之甘于刻薄而便于嚴(yán)法久矣
譯文:
(2)謂天下將諒我之無可奈何于吾君,而不吾罪也
譯文:
(3)其始之不同術(shù)也,而卒出于同者,豈其本志哉
譯文:
一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.
1-5:DBADC; 6-10:BACDC; 11-12: BC.
二、填空題:本大題共4個(gè)小題,每小題4分,共16分.
13.3; 14.-4; 15.1; 16..
三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說明,證明過程或演算步驟.
17.解:(Ⅰ)∵l1∥l2,,
∴,????????????????????????? 3分
∴,
∴.??????????????????????? 6分
(Ⅱ)∵且,
∴,∴,當(dāng)且僅當(dāng)時(shí)取"=".??? 8分
∵,∴,???????????? 10分
∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ
故△ABC面積取最大值為.?????????????????????? 12分
18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.
①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????? 1分
②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;????? 3分
③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????? 5分
∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分
(Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:
(k=1、2、3、4).?? 8分
則ξ的概率分布列為:
ξ
1
2
3
4
P
??????????????????????????????????? 10分
∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .????????? 12分
19.(Ⅰ)證明:∵四邊形AA
∵側(cè)面ABB
∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分
(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,,.則,,,.??????????????????????????? 5分
設(shè)是平面ABC的一個(gè)法向量,
則即
令,則.設(shè)A1到平面ABC的距離為d.
∴.????????????????????? 8分
(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量. 9分
∴.????????????????? 11分
∴二面角B-AC-C1的余弦值是.??????????????????? 12分
20.解:(Ⅰ),對稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.???????????????????????? 2分
當(dāng)時(shí),.?????????????????????????? 3分
∵ ①
∴ ②
②-①得,即,?????????????? 4分
則,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.
∴,∴.?????????????? 6分
(Ⅱ)∵,∴.
∵???????????????? 7分
可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.
即????????????????????? 10分
可知存在正整數(shù)或6,使得對于任意的正整數(shù)n,都有成立.??? 12分
21.解:(Ⅰ)設(shè),,,
,,,
,,
.∵,
∴,∴,∴.?????????????????? 2分
則N(c,0),M(0,c),所以,
∴,則,.
∴橢圓的方程為.?????????????????????? 4分
(Ⅱ)∵圓O與直線l相切,則,即,????????? 5分
由消去y得.
∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),
,
∴,,?????????????????? 7分
∴,
由,,.????? 8分
.??????????? 9分
(或).
設(shè),則,,,
令,則,
∴在時(shí)單調(diào)遞增,????????????????????? 11分
∴S關(guān)于μ在區(qū)間單調(diào)遞增,,,
∴.???????????????????????????? 12分
(或,
∴S關(guān)于u在區(qū)間單調(diào)遞增,???????????????????? 11分
∵,,.)???????????????? 12分
22.解:(Ⅰ)因?yàn)?sub>,,則, 1分
當(dāng)時(shí),;當(dāng)時(shí),.
∴在上單調(diào)遞增;在上單調(diào)遞減,
∴函數(shù)在處取得極大值.???????????????????? 2分
∵函數(shù)在區(qū)間(其中)上存在極值,
∴解得.??????????????????????? 3分
(Ⅱ)不等式,即為,???????????? 4分
記,∴,?? 5分
令,則,∵,∴,在上遞增,
∴,從而,故在上也單調(diào)遞增,
∴,
∴.??????????????????????????????? 7分
(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分
令則,??????????????? 9分
∴,
,
,
………
,??????????????????????? 10分
疊加得:
.???????????????????? 12分
則,
∴.???????????????????? 14
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com