設(shè)v0為A球的初速度,則由勻加速運動公式得⑤ 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)擺線是數(shù)學(xué)中眾多迷人曲線之一,它是這樣定義的:一個圓沿一直線無滑動地滾動,則圓上一固定點所經(jīng)過的軌跡稱為擺線.在豎直平面內(nèi)有xOy坐標(biāo)系,空間存在垂直xOy平面向里的勻強磁場,磁感應(yīng)強度為B,一質(zhì)量為m、電荷量為+q的小球從坐標(biāo)原點由靜止釋放,小球的軌跡就是擺線.小球在O點速度為0時,可以分解為大小始終相等的一水平向右和一水平向左的兩個分速度,如果速度大小取適當(dāng)?shù)闹,就可以把小球的運動分解成以v0的速度向右做勻速直線運動和從O點以向左速度v1為初速度做勻速圓周運動兩個分運動.設(shè)重力加速度為g,下列式子正確的是( 。

查看答案和解析>>

精英家教網(wǎng)如圖甲所示為研究平拋運動的實驗裝置:
(1)現(xiàn)把兩個小鐵球分別吸在電磁鐵C、E上,然后切斷電磁鐵C的電源,使一只小鐵球從軌道A射出,并在射出時碰到碰撞開關(guān)S,使電磁鐵E斷電釋放它吸著的小鐵球,兩鐵球同時落到地面.這個實驗
 

A.只能說明平拋運動的水平方向做勻速直線運動的規(guī)律
B.只能說明平拋運動的豎直方向做自由落體運動的規(guī)律
C.不能說明上述AB規(guī)律中的任何一條
D.能同時說明上述AB兩條規(guī)律
(2)若在實驗中利用頻閃照相機得到小球做平拋運動的頻閃照片,還可以用來驗證機械能守恒定律,如圖乙是小球?qū)嶒炛械牟糠治恢玫念l閃照片.小球在平拋運動途中的幾個位置如圖中的a、b、c、d所示,已知小方格的邊長L=1.6cm,頻閃的頻率為f=25Hz,則:
①小球平拋的初速度v0=
 
m/s.小球在b點的速率為
 
 m/s(兩空都取二位有效數(shù)字).
②設(shè)小球的質(zhì)量為m,重力加速度為g.為驗證小球從b→c過程中機械能是否守恒,則應(yīng)算出重力勢能的減少量為
 
,動能的增加量為
 
 (用L、f、m、g表示),然后比較二者是否相等.

查看答案和解析>>

如圖甲所示為研究平拋運動的實驗裝置:
(1)現(xiàn)把兩個小鐵球分別吸在電磁鐵C、E上,然后切斷電磁鐵C的電源,使一只小鐵球從軌道A射出,并在射出時碰到碰撞開關(guān)S,使電磁鐵E斷電釋放它吸著的小鐵球,兩鐵球同時落到地面.這個實驗______
A.只能說明平拋運動的水平方向做勻速直線運動的規(guī)律
B.只能說明平拋運動的豎直方向做自由落體運動的規(guī)律
C.不能說明上述AB規(guī)律中的任何一條
D.能同時說明上述AB兩條規(guī)律
(2)若在實驗中利用頻閃照相機得到小球做平拋運動的頻閃照片,還可以用來驗證機械能守恒定律,如圖乙是小球?qū)嶒炛械牟糠治恢玫念l閃照片.小球在平拋運動途中的幾個位置如圖中的a、b、c、d所示,已知小方格的邊長L=1.6cm,頻閃的頻率為f=25Hz,則:
①小球平拋的初速度v0=______m/s.小球在b點的速率為______m/s(兩空都取二位有效數(shù)字).
②設(shè)小球的質(zhì)量為m,重力加速度為g.為驗證小球從b→c過程中機械能是否守恒,則應(yīng)算出重力勢能的減少量為______,動能的增加量為______(用L、f、m、g表示),然后比較二者是否相等.

查看答案和解析>>

 如圖所示,一根水平光滑的絕緣直槽軌連接一個豎直放置的半

徑為R=0.50m的絕緣光滑槽軌.槽軌處在垂直紙面向外的勻強磁

場中,磁感應(yīng)強度B=0.50T.有一個質(zhì)量m=0.10g,帶電量為q

=+1.6×10-3C的小球在水平軌道上向右運動.若小球恰好能通

過最高點,則下列說法正確的是(   )

A.小球在最高點只受到洛侖茲力和重力的作用

B.由于無摩擦力,且洛侖茲力不做功,所以小球到達(dá)最高點小球在水平軌道上的機械能相等

C.如果設(shè)小球到達(dá)最高點的線速度是v,小球在最高點時式子mgqvBmv2/R成立

D.如果重力加速度取10m/s2,則小球初速度v0=4.6m/s

 

查看答案和解析>>

 如圖所示,一根水平光滑的絕緣直槽軌連接一個豎直放置的半

徑為R=0.50m的絕緣光滑槽軌.槽軌處在垂直紙面向外的勻強磁

場中,磁感應(yīng)強度B=0.50T.有一個質(zhì)量m=0.10g,帶電量為q

=+1.6×10-3C的小球在水平軌道上向右運動.若小球恰好能通

過最高點,則下列說法正確的是(   )

A.小球在最高點只受到洛侖茲力和重力的作用

B.由于無摩擦力,且洛侖茲力不做功,所以小球到達(dá)最高點小球在水平軌道上的機械能相等

C.如果設(shè)小球到達(dá)最高點的線速度是v,小球在最高點時式子mgqvBmv2/R成立

D.如果重力加速度取10m/s2,則小球初速度v0=4.6m/s

 

查看答案和解析>>

一、選擇題

1、B    2、C  3、AC    4、D    5、BC  6BC  

7、A  解析:由題意知,地面對物塊A的摩擦力為0,對物塊B的摩擦力為。

對A、B整體,設(shè)共同運動的加速度為a,由牛頓第二定律有:

對B物體,設(shè)A對B的作用力為,同理有

聯(lián)立以上三式得:

 8、B    9、A       10、B

二、實驗題

11、⑴ 不變    ⑵ AD  ⑶ABC  ⑷某學(xué)生的質(zhì)量

三、計算題

12、解析:由牛頓第二定律得:mg-f=ma

                         

    拋物后減速下降有:

                          Δv=a/Δt

                    解得:

 

13、解析:人相對木板奔跑時,設(shè)人的質(zhì)量為,加速度為,木板的質(zhì)量為M,加速度大小為,人與木板間的摩擦力為,根據(jù)牛頓第二定律,對人有:;

(2)設(shè)人從木板左端開始距到右端的時間為,對木板受力分析可知:,方向向左;

由幾何關(guān)系得:,代入數(shù)據(jù)得:

(3)當(dāng)人奔跑至右端時,人的速度,木板的速度;人抱住木柱的過程中,系統(tǒng)所受的合外力遠(yuǎn)小于相互作用的內(nèi)力,滿足動量守恒條件,有:

。ㄆ渲為二者共同速度)

代入數(shù)據(jù)得,方向與人原來運動方向一致;

以后二者以為初速度向右作減速滑動,其加速度大小為,故木板滑行的距離為

  

14. 解析:(1)從圖中可以看出,在t=2s內(nèi)運動員做勻加速直線運動,其加速度大小為

 =8m/s2

設(shè)此過程中運動員受到的阻力大小為f,根據(jù)牛頓第二定律,有mg-f=ma

得           f=m(g-a)=80×(10-8)N=160N

(2)從圖中估算得出運動員在14s內(nèi)下落了

                     39.5×2×2m158 m

根據(jù)動能定理,有

所以有    =(80×10×158-×80×62)J≈1.25×105J

(3)14s后運動員做勻速運動的時間為

              s=57s

運動員從飛機上跳下到著地需要的總時間

        t=t+t′=(14+57)s=71s

15. 13、解析:(1)取豎直向下的方向為正方向。

   球與管第一次碰地前瞬間速度,方向向下。

   碰地的瞬間管的速度,方向向上;球的速度,方向向下,

   球相對于管的速度,方向向下。

   碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

   球受重力及向上的摩擦力,加速度a=3g,方向向上,

球相對管的加速度a=5g,方向向上。

取管為參照物,則球與管相對靜止前,球相對管下滑的距離為:

要滿足球不滑出圓管,則有。

(2)設(shè)管從碰地到它彈到最高點所需時間為t1(設(shè)球與管在這段時間內(nèi)摩擦力方向不變),則:

設(shè)管從碰地到與球相對靜止所需時間為t2

因為t1 >t2,說明球與管先達(dá)到相對靜止,再以共同速度上升至最高點,設(shè)球與管達(dá)到相對靜止時離地高度為h’,兩者共同速度為v’,分別為:

然后球與管再以共同速度v’作豎直上拋運動,再上升高度h’’為

因此,管上升最大高度H’=h’+h’’=

(3)當(dāng)球與管第二次共同下落時,離地高為,球位于距管頂處,同題(1)可解得在第二次反彈中發(fā)生的相對位移。

 

16. 解析:(1)小球最后靜止在水平地面上,在整個運動過程中,空氣阻力做功使其機械能減少,設(shè)小球從開始拋出到最后靜止所通過的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

    (2)第一次上升和下降:設(shè)上升的加速度為a11.上升所用的時間為t11,上升的最大高度為h1;下降的加速度為a12,下降所用時間為t12

    上升階段:F=mg+f =1.6 mg

    由牛頓第二定律:a11 =1.6g           

    根據(jù):vt=v0-a11t11,  vt=0

    得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

    下降階段:a12=(mg-f)/m= 0.4g          

    由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

    所以上升和下降所用的總時間為:T1=t11+t12=3t11=  15 v0/(8g)        

    第二次上升和下降,以后每次上升的加速度都為a11,下降的加速度都為a12;設(shè)上升的初速度為v2,上升的最大高度為h2,上升所用時間為t21,下降所用時間為t22

    由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

    上升階段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

    下降階段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

 所以第二次上升和下降所用總時間為:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

    第三次上升和下降,設(shè)上升的初速度為v3,上升的最大高度為h3,上升所用時間為t31,下降所用時間為t32

    由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

    上升階段:v3=a11t3l,得t31= 5 v0/(32g)    

    下降階段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

    所以第三次上升和下降所用的總時間為:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

    同理,第n次上升和下降所用的總時間為: Tn        

    所以,從拋出到落地所用總時間為: T=15 v0/(4g)

 


同步練習(xí)冊答案