理解平拋物體的運動的處理方法(1)平拋運動的處理方法:把平拋運動看作為兩個分運動的合動動:一個是水平方向的勻速直線運動.一個是豎直方向的勻加速直線運動.(2)平拋運動的性質:做平拋運動的物體僅受重力的作用.故平拋運動是勻變速曲線運動.(3)臨界問題: 典型例題很多.如:在排球運動中.為了使從某一位置和某一高度水平扣出的球既不觸網.又不出界.扣球速度的取值范圍應是多少? 查看更多

 

題目列表(包括答案和解析)

平拋運動及其規(guī)律

1.平拋運動:將物體用一定的初速度沿________方向拋出,不考慮空氣阻力,物體只在________作用下的運動.

2.平拋運動的處理方法:可分解成水平方向的________運動和豎直方向的________運動兩個方向的分運動.

3.平拋運動的規(guī)律:

水平方向:勻速直線運動vx=v0,x=x0t,ax=0

豎直方向:自由落體運動vy=gt,,ay=g

合運動(實際運動):,a=g

4.平拋運動的性質:做平拋運動的物體僅受重力的作用,故平拋運動是________曲線運動.

5.平拋運動的常用推論:①做平拋運動的物體任意時刻的瞬時速度的反向延長線與初速度方向延長線的交點到拋出點的距離都等于水平位移的一半.

②平拋運動中以拋點O為坐標原點的坐標系中任一點A(x,y)的速度方向與豎直方向的夾角為α,如圖,則tanα=x/2y

查看答案和解析>>

第三部分 運動學

第一講 基本知識介紹

一. 基本概念

1.  質點

2.  參照物

3.  參照系——固連于參照物上的坐標系(解題時要記住所選的是參照系,而不僅是一個點)

4.絕對運動,相對運動,牽連運動:v=v+v 

二.運動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學教材中表述為:v=dr/dt, 表示r對t 求導數(shù)

5.以上是運動學中的基本物理量,也就是位移、位移的一階導數(shù)、位移的二階導數(shù)。可是

三階導數(shù)為什么不是呢?因為牛頓第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導數(shù)叫“急動度”。)

6.由于以上三個量均為矢量,所以在運算中用分量表示一般比較好

三.等加速運動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經典的物理問題:二次世界大戰(zhàn)中物理學家曾經研究,當大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當飛機在哪一區(qū)域飛行之外時,不會有危險?(注:結論是這一區(qū)域為一拋物線,此拋物線是所有炮彈拋物線的包絡線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉動

1. 我們講過的圓周運動是平動而不是轉動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標量,而極小的角位移是矢量

4.  同一剛體上兩點的相對速度和相對加速度 

兩點的相對距離不變,相對運動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質點速度分別V,VB  ,VC      

求G的速度。

五.課后習題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經過時間T木筏劃到路線上標有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點,再繞過B、D,BC段水平,當以恒定水平速度v拉繩上的自由端時,A沿水平面前進,求當跨過B的兩段繩子的夾角為α時,A的運動速度。

(vA

(2)拋體運動問題的一般處理方法

  1. 平拋運動
  2. 斜拋運動
  3. 常見的處理方法

(1)將斜上拋運動分解為水平方向的勻速直線運動和豎直方向的豎直上拋運動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運動學公式解題

(3)將斜拋運動分解為沿初速度方向的斜向上的勻速直線運動和自由落體運動兩個分運動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠?最遠射程為多少?

(α=、 x=

第二講 運動的合成與分解、相對運動

(一)知識點點撥

  1. 力的獨立性原理:各分力作用互不影響,單獨起作用。
  2. 運動的獨立性原理:分運動之間互不影響,彼此之間滿足自己的運動規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運動的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉換:動參考系,靜參考系

相對運動:動點相對于動參考系的運動

絕對運動:動點相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運動

牽連運動:動參考系相對于靜參考系的運動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21角,而坐在火車里乘客看到雨滴的徑跡恰好豎直方向。求解雨滴相對于地的運動。

提示:矢量關系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據測得的數(shù)據來計算自動扶梯的臺階數(shù)?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經10min后到達正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經過12.5min恰好到達正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設風速u = 21km/h ,方向與三角形的一邊平行并與飛機起飛方向相同,試求:飛機繞三角形一周需多少時間?

3.圖為從兩列蒸汽機車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風速。

4、細桿AB長L ,兩端分別約束在x 、 y軸上運動,(1)試求桿上與A點相距aL(0< a <1)的P點運動軌跡;(2)如果vA為已知,試求P點的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。

(四)同步練習提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向為飛機合速度的方向(而非機頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習一類似。答案為:3

4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點只繞A轉動。但鑒于桿子的實際運動情形如右圖,應有v = vAcosθ,v = vA,可知B端相對A的轉動線速度為:v + vAsinθ=  

P點的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

 

一、選擇題

1、根據圖象分析:若沿x軸作勻速運動,通過圖1分析可知,y方向先減速后加速;若沿y軸方向作勻速運動,通過圖2分析可知,x方向先加速后減速。

答案:B

2、乙船能到達A點,則vcos600=u,

過河時間t滿足:t = H/( vsin600), 甲、乙兩船沿垂直于河岸方向的分速度相同,故過河時間相同。在t時間內甲船沿河岸方向的位移為s= (vcos600 + u )t=

答案:D

3、根據萬有引力定律:,得:T=

答案:A

4、質點在A、B、C、D四點離開軌道,分別做下拋、平拋、上拋、平拋運動。很明顯,在A點離開軌道比在C、D兩點離開軌道在空間時間短。通過計算在A點下拋落地時間為tA=(6-4)s,在B點平拋落地時間tB=4s,顯然,在A點離開軌道后在空中時間最短。根據機械能守恒,在D剛拋出時機械能最大,所以落地時速度最大。

答案:AD

5、在軌道上向其運行方向彈射一個物體,由于質量遠小于空間站的質量,空間站仍沿原方向運動。根據動量守恒,彈出后一瞬間,空間站沿原運行方向的速度變小,提供的向心力(萬有引力)大于需要的向心力,軌道半徑減小,高度降低,在較低的軌道上運行速率變大,周期變小。

答案:C

6、當懸線在豎直狀態(tài)與釘相碰時根據能量守恒可知,小球速度不變;但圓周運動的半徑減小,需要的向心力變大,向心加速度變大,繩子上的拉力變大。

答案:BD

7、根據萬有引力定律:可得:M=,可求出恒星質量與太陽質量之比,根據可得:v=,可求出行星運行速度與地球公轉速度之比。

答案:AD

8、衛(wèi)星仍圍繞地球運行,所以發(fā)射速度小11.2km/s;最大環(huán)繞速度為7.9km/s,所以在軌道Ⅱ上的速度小于7.9km/s;根據機械能守恒可知:衛(wèi)星在P點的速度大于在Q點的速度;衛(wèi)星在軌道Ⅰ的Q點是提供的向心力大于需要的向心力,在軌道Ⅱ上Q點是提供的向心力等于需要的向心力,所以在Q點從軌道Ⅰ進入軌道Ⅱ必須增大速度。

答案:CD

9、同步衛(wèi)星隨地球自轉的方向是從東向西,把同步衛(wèi)星從赤道上空3.6萬千米、東經103°處,調整到104°處,相對于地球沿前進方向移動位置,需要增大相對速度,所以應先下降高度增大速度到某一位置再上升到原來的高度。

答案:A

10、開始轉動時向心力由靜摩擦力提供,但根據F=mrω2可知,B需要的向心力是A的兩倍。所以隨著轉速增大,B的摩擦力首先達到最大靜摩擦力。繼續(xù)增大轉速,繩子的張力增大,B的向心力由最大靜摩擦力提供,A的向心力由靜摩擦力和繩子的張力的合力提供,隨著轉速的增大,B需要的向心力的增量(繩子張力的增量)比A需要的向心力的增量大,因而A指向圓心的摩擦力逐漸減小直到為0然后反向增大到最大靜摩擦力。所以,B受到的靜摩擦力先增大,后保持不變;A受到的靜摩擦力是先減小后增大;A受到的合外力就是向心力一直在增大。

答案:BD

 

二、填空題

11、圓盤轉動時,角速度的表達式為ω= ,  T為電磁打點計的時器打點的時間間隔,r為圓盤的半徑,x2、x1是紙帶上選定的兩點分別對應米尺上的刻度值,n為選定的兩點間的打點數(shù)(含兩點)。地紙帶上選取兩點(間隔盡可能大些)代入上式可求得ω= 6.8rad/s。

12、 (1)斜槽末端切線方向保持水平;從同一高度。

(2)設時間間隔為t, x = v0t,   y2-y1=gt2 ,解得: v0=.將x=20.00cm,y1 =4.70cm y2 =14.50cm代入求得v0=2m/s

 

三、計算題

13.解:⑴在行星表面,質量為m的物體的重力近似等于其受到的萬有引力,則

                          

g=                               

得:   

⑵行星表面的環(huán)繞速度即為第一宇宙速度,做勻速圓周運動的向心力是萬有引力提供的,則

                         

v1=                    

得: 

14解析:用r表示飛船圓軌道半徑,有r =R +H=6.71×l06 m

由萬有引力定律和牛頓定律,得 , 式中M表示地球質量,m表示飛船質量,T表示飛船繞地球運行的周期,G表示萬有引力常量.

利用及上式, 得 ,代入數(shù)值解得T=5.28×103s,

出艙活動時間t=25min23s=1523s, 航天員繞行地球角度 =1040

 

15.解:(1)這位同學對過程的分析錯誤,物塊先沿著圓柱面加速下滑,然后離開圓柱面做斜下拋運動,離開圓柱面時的速率不等于。                   

(2)a、設物塊離開圓柱面時的速率為,

                     

        

解得:                      

(2)b、由:  得:

落地時的速率為                       

16.解:對子彈和木塊應用動量守恒定律:

                              

      所以                                  

對子彈、木塊由水平軌道到最高點應用機械能守恒定律,

取水平面為零勢能面:有

          

   所以                        

由平拋運動規(guī)律有:                          

                            

解得:                   

所以,當R = 0.2m時水平距離最大                

最大值Smax = 0.8m。

 

17.解:(1)

 

(2)設人在B1位置剛好看見衛(wèi)星出現(xiàn)在A1位置,最后

在B2位置看到衛(wèi)星從A2位置消失,

    OA1=2OB1

  ∠A1OB1=∠A2OB2=π/3

從B1到B2時間為t

則有   

18.解: (1)設 A、B的圓軌道半徑分別為,由題意知,A、B做勻速圓周運動的角速 度相同,設其為。由牛頓運動定律,有

設 A、B之間的距離為,又,由上述各式得

,                               ①

由萬有引力定律,有

                           

將①代入得

                           

                           

比較可得

                                                   ②

(2)由牛頓第二定律,有

                                                   ③

又可見星 A的軌道半徑

                                                                ④

由②③④式解得

                                               ⑤

(3)將代入⑤式,得

                           

代入數(shù)據得

                                            ⑥

,將其代入⑥式得

                                    ⑦

可見,的值隨 n的增大而增大,試令,得

                                           ⑧

若使⑦式成立,則 n 必大于 2,即暗星 B 的質量必大于,由此得出結

論:暗星有可能是黑洞。

 

 

 


同步練習冊答案