題目列表(包括答案和解析)
第二部分 牛頓運動定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點
a、矢量性
b、獨立作用性:ΣF → a ,ΣFx → ax …
c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點
a、同性質(zhì)(但不同物體)
b、等時效(同增同減)
c、無條件(與運動狀態(tài)、空間選擇無關(guān))
第二講 牛頓定律的應(yīng)用
一、牛頓第一、第二定律的應(yīng)用
單獨應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。
應(yīng)用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達(dá)的驅(qū)動下,皮帶運輸機上方的皮帶以恒定的速度向右運動,F(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中( )
A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運動
B、當(dāng)工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當(dāng)工件相對皮帶靜止時,它位于皮帶上A點右側(cè)的某一點
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。
較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調(diào)節(jié)的特殊“物體”)
此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出
只有當(dāng)L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時間t(過程略,答案為5.5s)
進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細(xì)繩,在剪斷瞬時,B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應(yīng)用
應(yīng)用要點:受力較少時,直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時,結(jié)合正交分解與“獨立作用性”解題。
在難度方面,“瞬時性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應(yīng)用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)
進(jìn)階練習(xí)1:在一向右運動的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。
解說:當(dāng)力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨立作用性”列方程。
正交坐標(biāo)的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨立解T值是成功的。結(jié)果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當(dāng)a>ctgθ時,張力T的結(jié)果會變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學(xué)生活動:用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”
進(jìn)階練習(xí):如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進(jìn)而充分領(lǐng)會用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學(xué)生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?
結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(從即將開始的運動來反推)。
知識點,牛頓第二定律的瞬時性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應(yīng)用
要點:在動力學(xué)問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。
補充:當(dāng)多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導(dǎo)過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結(jié)論又如何?
解:分兩種情況,(1)能拉動;(2)不能拉動。
第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結(jié)論的化簡也麻煩一些。
第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動,結(jié)論不變。
若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。
應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?
解:略。
答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。
2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質(zhì)量也不計,為使三個物體無相對滑動,水平推力F應(yīng)為多少?
解說:
此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學(xué)方程;整體有一個動力學(xué)方程。就足以解題了。
答案:F = 。
思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當(dāng)?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。
解:此時,m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當(dāng)m1 ≤ m2時,沒有適應(yīng)題意的F′;當(dāng)m1 > m2時,適應(yīng)題意的F′= 。
3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學(xué)方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當(dāng)系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、
1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務(wù)必在這個方向上進(jìn)行突破。
(學(xué)生活動)定型判斷斜面的運動情況、滑塊的運動情況。
位移矢量示意圖如圖19所示。根據(jù)運動學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。
(學(xué)生活動)這兩個加速度矢量有什么關(guān)系?
沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學(xué)生活動)思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。
解說:這是一個比較特殊的“連接體問題”,尋求運動學(xué)參量的關(guān)系似乎比動力學(xué)分析更加重要。動力學(xué)方面,只需要隔離滑套C就行了。
(學(xué)生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設(shè)全程時間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進(jìn)動力學(xué)在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動力學(xué)方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習(xí)題。
一、選擇題
1、根據(jù)圖象分析:若沿x軸作勻速運動,通過圖1分析可知,y方向先減速后加速;若沿y軸方向作勻速運動,通過圖2分析可知,x方向先加速后減速。
答案:B
2、乙船能到達(dá)A點,則vcos600=u,
過河時間t滿足:t = H/( vsin600), 甲、乙兩船沿垂直于河岸方向的分速度相同,故過河時間相同。在t時間內(nèi)甲船沿河岸方向的位移為s= (vcos600 + u )t=。
答案:D
3、根據(jù)萬有引力定律:,得:T=
答案:A
4、質(zhì)點在A、B、C、D四點離開軌道,分別做下拋、平拋、上拋、平拋運動。很明顯,在A點離開軌道比在C、D兩點離開軌道在空間時間短。通過計算在A點下拋落地時間為tA=(6-4)s,在B點平拋落地時間tB=4s,顯然,在A點離開軌道后在空中時間最短。根據(jù)機械能守恒,在D剛拋出時機械能最大,所以落地時速度最大。
答案:AD
5、在軌道上向其運行方向彈射一個物體,由于質(zhì)量遠(yuǎn)小于空間站的質(zhì)量,空間站仍沿原方向運動。根據(jù)動量守恒,彈出后一瞬間,空間站沿原運行方向的速度變小,提供的向心力(萬有引力)大于需要的向心力,軌道半徑減小,高度降低,在較低的軌道上運行速率變大,周期變小。
答案:C
6、當(dāng)懸線在豎直狀態(tài)與釘相碰時根據(jù)能量守恒可知,小球速度不變;但圓周運動的半徑減小,需要的向心力變大,向心加速度變大,繩子上的拉力變大。
答案:BD
7、根據(jù)萬有引力定律:可得:M=,可求出恒星質(zhì)量與太陽質(zhì)量之比,根據(jù)可得:v=,可求出行星運行速度與地球公轉(zhuǎn)速度之比。
答案:AD
8、衛(wèi)星仍圍繞地球運行,所以發(fā)射速度小
答案:CD
9、同步衛(wèi)星隨地球自轉(zhuǎn)的方向是從東向西,把同步衛(wèi)星從赤道上空3.6萬千米、東經(jīng)103°處,調(diào)整到104°處,相對于地球沿前進(jìn)方向移動位置,需要增大相對速度,所以應(yīng)先下降高度增大速度到某一位置再上升到原來的高度。
答案:A
10、開始轉(zhuǎn)動時向心力由靜摩擦力提供,但根據(jù)F=mrω2可知,B需要的向心力是A的兩倍。所以隨著轉(zhuǎn)速增大,B的摩擦力首先達(dá)到最大靜摩擦力。繼續(xù)增大轉(zhuǎn)速,繩子的張力增大,B的向心力由最大靜摩擦力提供,A的向心力由靜摩擦力和繩子的張力的合力提供,隨著轉(zhuǎn)速的增大,B需要的向心力的增量(繩子張力的增量)比A需要的向心力的增量大,因而A指向圓心的摩擦力逐漸減小直到為0然后反向增大到最大靜摩擦力。所以,B受到的靜摩擦力先增大,后保持不變;A受到的靜摩擦力是先減小后增大;A受到的合外力就是向心力一直在增大。
答案:BD
二、填空題
11、圓盤轉(zhuǎn)動時,角速度的表達(dá)式為ω= , T為電磁打點計的時器打點的時間間隔,r為圓盤的半徑,x2、x1是紙帶上選定的兩點分別對應(yīng)米尺上的刻度值,n為選定的兩點間的打點數(shù)(含兩點)。地紙帶上選取兩點(間隔盡可能大些)代入上式可求得ω= 6.8rad/s。
12、 (1)斜槽末端切線方向保持水平;從同一高度。
(2)設(shè)時間間隔為t, x
= v0t, y2-y1=gt2
,解得: v0=.將x=
三、計算題
13.解:⑴在行星表面,質(zhì)量為m的物體的重力近似等于其受到的萬有引力,則
g=
得:
⑵行星表面的環(huán)繞速度即為第一宇宙速度,做勻速圓周運動的向心力是萬有引力提供的,則
v1=
得:
14.解析:用r表示飛船圓軌道半徑,有r =R +H=6.71×l
由萬有引力定律和牛頓定律,得 , 式中M表示地球質(zhì)量,m表示飛船質(zhì)量,T表示飛船繞地球運行的周期,G表示萬有引力常量.
利用及上式, 得 ,代入數(shù)值解得T=5.28×103s,
出艙活動時間t=25min23s=1523s, 航天員繞行地球角度 =1040
15.解:(1)這位同學(xué)對過程的分析錯誤,物塊先沿著圓柱面加速下滑,然后離開圓柱面做斜下拋運動,離開圓柱面時的速率不等于。
(2)a、設(shè)物塊離開圓柱面時的速率為,
解得:
(2)b、由: 得:
落地時的速率為
16.解:對子彈和木塊應(yīng)用動量守恒定律:
所以
對子彈、木塊由水平軌道到最高點應(yīng)用機械能守恒定律,
取水平面為零勢能面:有
所以
由平拋運動規(guī)律有:
解得:
所以,當(dāng)R =
最大值Smax =
17.解:(1)
(2)設(shè)人在B1位置剛好看見衛(wèi)星出現(xiàn)在A1位置,最后
在B2位置看到衛(wèi)星從A2位置消失,
OA1=2OB1
有 ∠A1OB1=∠A2OB2=π/3
從B1到B2時間為t
則有
18.解: (1)設(shè) A、B的圓軌道半徑分別為、,由題意知,A、B做勻速圓周運動的角速 度相同,設(shè)其為。由牛頓運動定律,有
設(shè) A、B之間的距離為,又,由上述各式得
, ①
由萬有引力定律,有
將①代入得
令
比較可得
②
(2)由牛頓第二定律,有
③
又可見星 A的軌道半徑
④
由②③④式解得
⑤
(3)將代入⑤式,得
代入數(shù)據(jù)得
⑥
,將其代入⑥式得
⑦
可見,的值隨 n的增大而增大,試令,得
⑧
若使⑦式成立,則 n 必大于 2,即暗星 B 的質(zhì)量必大于,由此得出結(jié)
論:暗星有可能是黑洞。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com