例5. 開普勒三定律也適用于神舟七號飛船的變軌運(yùn)動. 飛船與火箭分離后進(jìn)入預(yù)定軌道, 飛船在近地點(diǎn)開動發(fā)動機(jī)加速, 之后.飛船速度增大并轉(zhuǎn)移到與地球表面相切的橢圓軌道, 飛船在遠(yuǎn)地點(diǎn)再次點(diǎn)火加速, 飛船沿半徑為r的圓軌道繞地運(yùn)動. 設(shè)地球半徑為R.地球表面的重力加速度為g. 若不計空氣阻力.試求神舟七號從近地點(diǎn)到遠(yuǎn)地點(diǎn)時間.解析:設(shè)神舟七號飛船在橢圓軌道上運(yùn)行周期為T0.在半徑為r的圓軌道上運(yùn)行周期為T, 查看更多

 

題目列表(包括答案和解析)

 開普勒三定律也適用于神舟七號飛船的變軌運(yùn)動. 飛船與火箭分離后進(jìn)入預(yù)定軌道, 飛船在近地點(diǎn)(可認(rèn)為近地面)開動發(fā)動機(jī)加速, 之后,飛船速度增大并轉(zhuǎn)移到與地球表面相切的橢圓軌道, 飛船在遠(yuǎn)地點(diǎn)再次點(diǎn)火加速, 飛船沿半徑為r的圓軌道繞地運(yùn)動. 設(shè)地球半徑為R,地球表面的重力加速度為g, 若不計空氣阻力,試求神舟七號從近地點(diǎn)到遠(yuǎn)地點(diǎn)時間(變軌時間).

 

 

 

 

 

 

 

 

 

查看答案和解析>>

開普勒三定律也適用于神舟七號飛船的變軌運(yùn)動. 飛船與火箭分離后進(jìn)入預(yù)定軌道, 飛船在近地點(diǎn)(可認(rèn)為近地面)開動發(fā)動機(jī)加速, 之后,飛船速度增大并轉(zhuǎn)移到與地球表面相切的橢圓軌道, 飛船在遠(yuǎn)地點(diǎn)再次點(diǎn)火加速, 飛船沿半徑為r的圓軌道繞地運(yùn)動. 設(shè)地球半徑為R,地球表面的重力加速度為g, 若不計空氣阻力,試求神舟七號從近地點(diǎn)到遠(yuǎn)地點(diǎn)時間(變軌時間).

查看答案和解析>>

 開普勒三定律也適用于神舟七號飛船的變軌運(yùn)動. 飛船與火箭分離后進(jìn)入預(yù)定軌道, 飛船在近地點(diǎn)(可認(rèn)為近地面)開動發(fā)動機(jī)加速, 之后,飛船速度增大并轉(zhuǎn)移到與地球表面相切的橢圓軌道, 飛船在遠(yuǎn)地點(diǎn)再次點(diǎn)火加速, 飛船沿半徑為r的圓軌道繞地運(yùn)動. 設(shè)地球半徑為R,地球表面的重力加速度為g, 若不計空氣阻力,試求神舟七號從近地點(diǎn)到遠(yuǎn)地點(diǎn)時間(變軌時間).

 

 

 

 

 

 

 

 

 

查看答案和解析>>

開普勒在1609-1619年發(fā)表了著名的開普勒行星三定律,其中第三定律的內(nèi)容:所有行星在橢圓軌道的半長軸的三次方跟公轉(zhuǎn)周期的平方的比值都相等.實踐證明.開普勒三定律也適用于人造地球衛(wèi)星.2005年10月17日,“神舟”六號飛船在繞地球飛行5天后順利返回.“神舟”六號飛船在圓軌道正常運(yùn)行時,其圓軌道半徑為r,返回過程可簡化為:圓軌道上飛船,在適當(dāng)位置開動制動發(fā)動機(jī)一小段時間(計算時可當(dāng)作一瞬時),使飛船速度減小,并由圓軌道轉(zhuǎn)移到與地面相切的橢圓軌道上,如圖所示,橢圓軌道與地面的切點(diǎn)即為設(shè)在內(nèi)蒙的飛船主著陸場,設(shè)地球半徑為R,地球表面的重力加速度為g,圓軌道為橢圓軌道的一種特殊情況,空氣阻力不計.問:
(1)制動發(fā)動機(jī)是采用噴射加速后的質(zhì)子流來制動,那么發(fā)動機(jī)應(yīng)向什么方向噴射質(zhì)子流?
(2)飛船在圓軌道運(yùn)行的周期.
(3)制動之后,飛船經(jīng)過多長時間到達(dá)地面的主著陸場.

查看答案和解析>>

關(guān)于行星的運(yùn)動,下列說法中正確的是( 。

查看答案和解析>>

 

一、選擇題

1、根據(jù)圖象分析:若沿x軸作勻速運(yùn)動,通過圖1分析可知,y方向先減速后加速;若沿y軸方向作勻速運(yùn)動,通過圖2分析可知,x方向先加速后減速。

答案:B

2、乙船能到達(dá)A點(diǎn),則vcos600=u,

過河時間t滿足:t = H/( vsin600), 甲、乙兩船沿垂直于河岸方向的分速度相同,故過河時間相同。在t時間內(nèi)甲船沿河岸方向的位移為s= (vcos600 + u )t=

答案:D

3、根據(jù)萬有引力定律:,得:T=

答案:A

4、質(zhì)點(diǎn)在A、B、C、D四點(diǎn)離開軌道,分別做下拋、平拋、上拋、平拋運(yùn)動。很明顯,在A點(diǎn)離開軌道比在C、D兩點(diǎn)離開軌道在空間時間短。通過計算在A點(diǎn)下拋落地時間為tA=(6-4)s,在B點(diǎn)平拋落地時間tB=4s,顯然,在A點(diǎn)離開軌道后在空中時間最短。根據(jù)機(jī)械能守恒,在D剛拋出時機(jī)械能最大,所以落地時速度最大。

答案:AD

5、在軌道上向其運(yùn)行方向彈射一個物體,由于質(zhì)量遠(yuǎn)小于空間站的質(zhì)量,空間站仍沿原方向運(yùn)動。根據(jù)動量守恒,彈出后一瞬間,空間站沿原運(yùn)行方向的速度變小,提供的向心力(萬有引力)大于需要的向心力,軌道半徑減小,高度降低,在較低的軌道上運(yùn)行速率變大,周期變小。

答案:C

6、當(dāng)懸線在豎直狀態(tài)與釘相碰時根據(jù)能量守恒可知,小球速度不變;但圓周運(yùn)動的半徑減小,需要的向心力變大,向心加速度變大,繩子上的拉力變大。

答案:BD

7、根據(jù)萬有引力定律:可得:M=,可求出恒星質(zhì)量與太陽質(zhì)量之比,根據(jù)可得:v=,可求出行星運(yùn)行速度與地球公轉(zhuǎn)速度之比。

答案:AD

8、衛(wèi)星仍圍繞地球運(yùn)行,所以發(fā)射速度小11.2km/s;最大環(huán)繞速度為7.9km/s,所以在軌道Ⅱ上的速度小于7.9km/s;根據(jù)機(jī)械能守恒可知:衛(wèi)星在P點(diǎn)的速度大于在Q點(diǎn)的速度;衛(wèi)星在軌道Ⅰ的Q點(diǎn)是提供的向心力大于需要的向心力,在軌道Ⅱ上Q點(diǎn)是提供的向心力等于需要的向心力,所以在Q點(diǎn)從軌道Ⅰ進(jìn)入軌道Ⅱ必須增大速度。

答案:CD

9、同步衛(wèi)星隨地球自轉(zhuǎn)的方向是從東向西,把同步衛(wèi)星從赤道上空3.6萬千米、東經(jīng)103°處,調(diào)整到104°處,相對于地球沿前進(jìn)方向移動位置,需要增大相對速度,所以應(yīng)先下降高度增大速度到某一位置再上升到原來的高度。

答案:A

10、開始轉(zhuǎn)動時向心力由靜摩擦力提供,但根據(jù)F=mrω2可知,B需要的向心力是A的兩倍。所以隨著轉(zhuǎn)速增大,B的摩擦力首先達(dá)到最大靜摩擦力。繼續(xù)增大轉(zhuǎn)速,繩子的張力增大,B的向心力由最大靜摩擦力提供,A的向心力由靜摩擦力和繩子的張力的合力提供,隨著轉(zhuǎn)速的增大,B需要的向心力的增量(繩子張力的增量)比A需要的向心力的增量大,因而A指向圓心的摩擦力逐漸減小直到為0然后反向增大到最大靜摩擦力。所以,B受到的靜摩擦力先增大,后保持不變;A受到的靜摩擦力是先減小后增大;A受到的合外力就是向心力一直在增大。

答案:BD

 

二、填空題

11、圓盤轉(zhuǎn)動時,角速度的表達(dá)式為ω= ,  T為電磁打點(diǎn)計的時器打點(diǎn)的時間間隔,r為圓盤的半徑,x2、x1是紙帶上選定的兩點(diǎn)分別對應(yīng)米尺上的刻度值,n為選定的兩點(diǎn)間的打點(diǎn)數(shù)(含兩點(diǎn))。地紙帶上選取兩點(diǎn)(間隔盡可能大些)代入上式可求得ω= 6.8rad/s。

12、 (1)斜槽末端切線方向保持水平;從同一高度。

(2)設(shè)時間間隔為t, x = v0t,   y2-y1=gt2 ,解得: v0=.將x=20.00cmy1 =4.70cm, y2 =14.50cm代入求得v0=2m/s

 

三、計算題

13.解:⑴在行星表面,質(zhì)量為m的物體的重力近似等于其受到的萬有引力,則

                          

g=                               

得:   

⑵行星表面的環(huán)繞速度即為第一宇宙速度,做勻速圓周運(yùn)動的向心力是萬有引力提供的,則

                         

v1=                    

得: 

14解析:用r表示飛船圓軌道半徑,有r =R +H=6.71×l06 m

由萬有引力定律和牛頓定律,得 , 式中M表示地球質(zhì)量,m表示飛船質(zhì)量,T表示飛船繞地球運(yùn)行的周期,G表示萬有引力常量.

利用及上式, 得 ,代入數(shù)值解得T=5.28×103s,

出艙活動時間t=25min23s=1523s, 航天員繞行地球角度 =1040

 

15.解:(1)這位同學(xué)對過程的分析錯誤,物塊先沿著圓柱面加速下滑,然后離開圓柱面做斜下拋運(yùn)動,離開圓柱面時的速率不等于。                   

(2)a、設(shè)物塊離開圓柱面時的速率為,

                     

        

解得:                      

(2)b、由:  得:

落地時的速率為                       

16.解:對子彈和木塊應(yīng)用動量守恒定律:

                              

      所以                                  

對子彈、木塊由水平軌道到最高點(diǎn)應(yīng)用機(jī)械能守恒定律,

取水平面為零勢能面:有

          

   所以                        

由平拋運(yùn)動規(guī)律有:                          

                            

解得:                   

所以,當(dāng)R = 0.2m時水平距離最大                

最大值Smax = 0.8m

 

17.解:(1)

 

(2)設(shè)人在B1位置剛好看見衛(wèi)星出現(xiàn)在A1位置,最后

在B2位置看到衛(wèi)星從A2位置消失,

    OA1=2OB1

  ∠A1OB1=∠A2OB2=π/3

從B1到B2時間為t

則有   

18.解: (1)設(shè) A、B的圓軌道半徑分別為,由題意知,A、B做勻速圓周運(yùn)動的角速 度相同,設(shè)其為。由牛頓運(yùn)動定律,有

設(shè) A、B之間的距離為,又,由上述各式得

,                               ①

由萬有引力定律,有

                           

將①代入得

                           

                           

比較可得

                                                   ②

(2)由牛頓第二定律,有

                                                   ③

又可見星 A的軌道半徑

                                                                ④

由②③④式解得

                                               ⑤

(3)將代入⑤式,得

                           

代入數(shù)據(jù)得

                                            ⑥

,將其代入⑥式得

                                    ⑦

可見,的值隨 n的增大而增大,試令,得

                                           ⑧

若使⑦式成立,則 n 必大于 2,即暗星 B 的質(zhì)量必大于,由此得出結(jié)

論:暗星有可能是黑洞。

 

 

 


同步練習(xí)冊答案