|AB|=4.∴曲線C是以原點為中心.A.B為焦點的雙曲線.設實半軸長為a.虛半軸長為b.半焦距為c. 查看更多

 

題目列表(包括答案和解析)

已知F1、F2分別是橢圓
x2
4
+
y2
3
=1的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線l交曲線C于x軸上方兩個不同點P、Q,點P關于x軸的對稱點為M,設
F1P
=λ
F1Q

(I)若λ∈[2,4],求直線L的斜率k的取值范圍;
(II)求證:直線MQ過定點.

查看答案和解析>>

已知F1、F2分別是橢圓數(shù)學公式+數(shù)學公式=1的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線l交曲線C于x軸上方兩個不同點P、Q,點P關于x軸的對稱點為M,設數(shù)學公式=數(shù)學公式
(I)若λ∈[2,4],求直線L的斜率k的取值范圍;
(II)求證:直線MQ過定點.

查看答案和解析>>

(2010•武清區(qū)一模)如圖,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1(-1,0)、
F2(1,0),M、N是直線x=a2上的兩個動點,且
F1M
F2N
=0

(1)設曲線C是以MN為直徑的圓,試判斷原點O與圓C的位置關系;
(2)若以MN為直徑的圓中,最小圓的半徑為2
2
,求橢圓的方程.

查看答案和解析>>

(本小題滿分12分)

曲線是以原點為中心,以拋物線的焦點F為右焦點,離心率為的橢圓,且過F的直線交橢圓C于P、Q兩點,M是中點.

(1)求橢圓C的方程;

(2)當時,求直線PQ的方程.

 

查看答案和解析>>

是以原點為中心,焦點在軸上的等軸雙曲線在第一象限部分,曲線在點P處的切線分別交該雙曲線的兩條漸近線于兩點,則(    )

A.          B.

C.    D.

 

查看答案和解析>>


同步練習冊答案