13解析:利用橢圓定義和正弦定理 得 b=2*4=8 查看更多

 

題目列表(包括答案和解析)

D

解析:由正弦定理得.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以

查看答案和解析>>

D

解析:由正弦定理得.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以

查看答案和解析>>

D

解析:由正弦定理得.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以

查看答案和解析>>

已知中,,.設,記.

(1)   求的解析式及定義域;

(2)設,是否存在實數(shù),使函數(shù)的值域為?若存在,求出的值;若不存在,請說明理由.

【解析】第一問利用(1)如圖,在中,由,,

可得

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當m>0的值域為m+1=3/2,n=1/2

2當m<0,不滿足的值域為;

因而存在實數(shù)m=1/2的值域為.

 

查看答案和解析>>

在△ABC中,已知B=45°,D是BC邊上的一點,AD=10,AC=14,DC=6,

求⑴ ∠ADB的大小;⑵ BD的長.

【解析】本試題主要考查了三角形的余弦定理和正弦定理的運用

第一問中,∵cos∠ADC=

=-∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=∴ cos∠ADB=60°

第二問中,結合正弦定理∵∠DAB=180°-∠ADB-∠B=75° 

    得BD==5(+1)

解:⑴ ∵cos∠ADC=

=-,……………………………3分

∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=,       ……………5分

∴ cos∠ADB=60°                                    ……………………………6分

⑵ ∵∠DAB=180°-∠ADB-∠B=75°                   ……………………………7分

                                 ……………………………9分

得BD==5(+1)

 

查看答案和解析>>


同步練習冊答案