將.進而求得解法2:設O到直線AF1的垂足為E.則Rt△OEF1―Rt△AF2F1. 查看更多

 

題目列表(包括答案和解析)

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1、F2,A是雙曲線漸近線上的一點,AF2⊥F1F2,原點O到直線AF1的距離為
1
3
|OF1|
,則漸近線的斜率為( 。

查看答案和解析>>

(2011•寶坻區(qū)一模)設橢圓C:
x2
a2
+
y2
5
=1
(a>0)的左右焦點分別為F1、F2,A是橢圓C上的一點,
AF2
F1F2
=0
,坐標原點O到直線AF1的距離為
1
3
|OF1|.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設Q是橢圓C上的一點,過點Q的直線l交x軸于點F(-1,0),交y軸于點M,若|
MQ
|=2|
QF
|,求直線l的斜率.

查看答案和解析>>

設橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,A是橢圓上的一點,AF2⊥AF1,原點O到直線AF1的距離為
1
2
|OF1|
,則橢圓的離心率為( 。

查看答案和解析>>

設橢圓C:
x2
a2
+
y2
2
=1(a>0)
的左右焦點分別為F1、F2,A是橢圓C上的一點,且
AF2
F1F2
=0
,坐標原點O到直線AF1的距離為
1
3
|OF1|

(1)求橢圓C的方程;
(2)設Q是橢圓C上的一點,過點Q的直線l交x軸于點F(-1,0),交y軸于點M,若|MQ|=2|QF|,求直線l的斜率.

查看答案和解析>>

(09年山東實驗中學診斷三文)(14分)

設橢圓的左、右焦點分別為F1、F2,A是橢圓上的一點,原點O到直線AF1的距離為

(1)求橢圓的離心率;

(2)設Q1.Q2為橢圓上的兩個動點,以線段Q1Q2為直徑的圓恒過原點,過原點O作直線Q1Q2的垂線OD,垂足為D,求點D的軌跡方程。

查看答案和解析>>


同步練習冊答案