設直線BC的方程為代入橢圓方程并整理得 查看更多

 

題目列表(包括答案和解析)

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到

,再利用可以結合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知平面直角坐標系中的點A(-1,0),B(3,2),求直線AB的方程的一個算法如下,請將其補充完整。
第一步,根據題意設直線AB的方程為y=kx+b
第二步,將A(-1,0),B(3,2)代入第一步所設的方程,得到-k+b=0①;3k+b=2②,
第三步,(    )
第四步,把第三步所得結果代入第一步所設的方程,得到
第五步,將第四步所得結果整理,得到方程x-2y+1=0。

查看答案和解析>>

經過點F(0,1)且與直線y=-1相切的動圓的圓心軌跡為M.點A、D在軌跡M上,且關于y軸對稱,過線段AD(兩端點除外)上的任意一點作直線,使直線與軌跡M在點D處的切線平行,設直線與軌跡M交于點B、C.
(1)求軌跡M的方程;
(2)證明:∠BAD=∠CAD;
(3)若點D到直線AB的距離等于
2
2
|AD|
,且△ABC的面積為20,求直線BC的方程.

查看答案和解析>>

設過點A(p,0)(p>0)的直線l交拋物線y2=2px(p>0)于B、C兩點,
(1)設直線l的傾斜角為α,寫出直線l的參數方程;
(2)設P是BC的中點,當α變化時,求P點軌跡的參數方程,并化為普通方程.

查看答案和解析>>

(Ⅰ)已知△ABC的三個頂點坐標為A(0,5)、B(1,-2)、C(-6,4),求BC邊上的高所在直線的方程;
(Ⅱ)設直線l的方程為 (a-1)x+y-2-a=0(a∈R).若直線l在兩坐標軸上的截距相等,求直線l的方程.

查看答案和解析>>


同步練習冊答案