19解:(1)由題設知 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列滿足,

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項和前n項和

【解析】第一問中,利用,得到從而得證

第二問中,利用∴ ∴分組求和法得到結論。

解:(1)由題得 ………4分

                    ……………………5分

   ∴數(shù)列是以2為公比,2為首項的等比數(shù)列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>

解:(Ⅰ)設,其半焦距為.則

   由條件知,得

   的右準線方程為,即

   的準線方程為

   由條件知, 所以,故

   從而,  

(Ⅱ)由題設知,設,,

   由,得,所以

   而,由條件,得

   由(Ⅰ)得,.從而,,即

   由,得.所以

   故

查看答案和解析>>

如圖,三棱柱中,側棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點。

(I) 證明:平面⊥平面

(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.

【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質(zhì)及幾何體的體積計算,考查空間想象能力、邏輯推理能力,是簡單題.

【解析】(Ⅰ)由題設知BC⊥,BC⊥AC,,∴,    又∵,∴,

由題設知,∴=,即,

又∵,   ∴⊥面,    ∵,

∴面⊥面

(Ⅱ)設棱錐的體積為,=1,由題意得,==,

由三棱柱的體積=1,

=1:1,  ∴平面分此棱柱為兩部分體積之比為1:1

 

查看答案和解析>>

已知,設是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>


同步練習冊答案