又.所以.解得. 查看更多

 

題目列表(包括答案和解析)

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.

(1)求證:;

(2)若四邊形ABCD是正方形,求證;

(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數(shù)值。

【解析】第一問中,利用由圓柱的性質(zhì)知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF     AD∥EF

第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

第三問中,設正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛 

(2) 四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

(3)設正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

 

查看答案和解析>>

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)的零點個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點個數(shù)問題,在坐標系中畫出圖形


由圖看出顯然一個交點,因此函數(shù)的零點個數(shù)只有一個

袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點.

(Ⅰ)當直線過右焦點時,求直線的方程;

(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

第二問中設,由,消去x,得,

則由,知<8,且有

由題意知O為的中點.由可知從而,設M是GH的中點,則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數(shù)的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,

(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;

(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?

查看答案和解析>>

為了能更好地了解鯨的生活習性,某動物研究所在受傷的鯨身上安裝了電子監(jiān)測裝置.從海岸放歸點A處(如圖所示)把它放歸大海,并沿海岸線由西向東不停地對鯨進行了40分鐘的跟蹤觀測,每隔10分鐘踩點測得數(shù)據(jù)如下表(設鯨沿海面游動).然后又在觀測站B處對鯨進行生活習性的詳細觀測.已知AB=15km,觀測站B的觀測半徑為5km.


(Ⅰ)根據(jù)表中數(shù)據(jù):①計算鯨沿海岸線方向運動的速度,②寫出a、b滿足的關系式并畫出鯨的運動路線簡圖;
(Ⅱ)若鯨繼續(xù)以(Ⅰ)中②的運動路線運動,則鯨大約經(jīng)過多少分鐘(從放歸時計時),可進入前方觀測站B的觀測范圍(精確到1分鐘)?

查看答案和解析>>


同步練習冊答案