題目列表(包括答案和解析)
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.
(Ⅰ)當(dāng)直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經(jīng)過點(,0),所以=,得.又因為m>1,所以,故直線的方程為
第二問中設(shè),由,消去x,得,
則由,知<8,且有
由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().
由題意可知,2|MO|<|GH|,得到范圍
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足(O為坐標原點),當(dāng)< 時,求實數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時單調(diào)遞減;當(dāng)時單調(diào)遞增,故當(dāng)時,取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.
故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1) 求曲線C的方程.
(2) 是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.
【解析】(1)由題意知曲線C上的點到F(1,0)的距離與到直線x=-1的距離相等.
可確定其軌跡是拋物線,即可求出其方程為y2=4x.
(2)設(shè)過點M的直線方程為x=ty+m,然后與拋物線方程聯(lián)立,消去x,利用韋達定理表示出,再證明其小于零即可.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com