已知函數(shù)的導函數(shù)且f(1)=7.設(shè) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d∈R且都為常數(shù))的圖象過點(1,7),其導函數(shù)在x=處取得最小值.設(shè)F(x)=f(x)-ax2(a∈R).

(1)當a<2時,求F(x)的極小值;

(2)已知P:x∈[0,+∞),Q:F(x)≥0,若P為Q的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導函數(shù)為,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

(Ⅰ)當a<2時,求F(x)的極小值;

(Ⅱ)若對任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式

查看答案和解析>>

(本小題滿分12分)

已知函數(shù)f(x)=x3+bx2+cx+d (b,c,d∈R且都為常數(shù))的導函數(shù)f¢(x)=3x2+4x且f(1)=7,設(shè)F(x)=f(x)-ax2

(1)當a<2時,求F(x)的極小值;

(2)若對任意x∈[0,+∞)都有F(x)≥0成立,求a的取值范圍;

(3)在(2)的條件下比較a2-13a+39與的大小.

 

查看答案和解析>>

(本小題滿分12分)
已知函數(shù)f(x)=x3+bx2+cx+d (b,c,d∈R且都為常數(shù))的導函數(shù)f¢(x)=3x2+4x且f(1)=7,設(shè)F(x)=f(x)-ax2
(1)當a<2時,求F(x)的極小值;
(2)若對任意x∈[0,+∞)都有F(x)≥0成立,求a的取值范圍;
(3)在(2)的條件下比較a2-13a+39與的大小.

查看答案和解析>>

(理)已知函數(shù)f(x)=(m∈R,e=2.718 28…是自然對數(shù)的底數(shù)).

(1)求函數(shù)f(x)的極值;

(2)當x>0時,設(shè)f(x)的反函數(shù)為f-1(x),對0<p<q,試比較f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導函數(shù)為f′(x)=3x2+4x,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

(1)當a<2時,求F(x)的極小值;

(2)若對任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式a2-13a+39≥.

查看答案和解析>>


同步練習冊答案