題目列表(包括答案和解析)
已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值.
【解析】(1)
所以,的最小正周期
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118369506745619_ST.files/image002.png">在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),
又,,,
故函數(shù)在區(qū)間上的最大值為,最小值為-1.
函數(shù)在同一個(gè)周期內(nèi),當(dāng) 時(shí),取最大值1,當(dāng)時(shí),取最小值。
(1)求函數(shù)的解析式
(2)函數(shù)的圖象經(jīng)過(guò)怎樣的變換可得到的圖象?
(3)若函數(shù)滿足方程求在內(nèi)的所有實(shí)數(shù)根之和.
【解析】第一問(wèn)中利用
又因
又 函數(shù)
第二問(wèn)中,利用的圖象向右平移個(gè)單位得的圖象
再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的.縱坐標(biāo)不變,得到的圖象,
第三問(wèn)中,利用三角函數(shù)的對(duì)稱性,的周期為
在內(nèi)恰有3個(gè)周期,
并且方程在內(nèi)有6個(gè)實(shí)根且
同理,可得結(jié)論。
解:(1)
又因
又 函數(shù)
(2)的圖象向右平移個(gè)單位得的圖象
再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的.縱坐標(biāo)不變,得到的圖象,
(3)的周期為
在內(nèi)恰有3個(gè)周期,
并且方程在內(nèi)有6個(gè)實(shí)根且
同理,
故所有實(shí)數(shù)之和為
|
9 |
5 |
411 |
68 |
137 |
20 |
【答案】
【解析】設(shè),有幾何意義知的最小值為, 又因?yàn)榇嬖趯?shí)數(shù)x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:∈,所以a的取值范圍是.故答案為:.
已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.
【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。
第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設(shè),則.
設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.
故在區(qū)間上是減函數(shù)。又
故存在,使得.
當(dāng)時(shí),有,當(dāng)時(shí),有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來(lái)源:]
所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;
故使命題成立的正整數(shù)m的最大值為5
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com