題目列表(包括答案和解析)
A.h(t)=10t B.h(t)=t2 C.h(t)=sint D.h(t)=log2t
A.h(t)=10t B.h(t)=t2
C.h(t)=sint D.h(t)=log2t
對(duì)函數(shù)f(x)=ax2+bx+c (a≠0,b、c∈R)作x=h(t)的代換,使得代換前后函數(shù)的值域總不改變的代換是
A. h(t)=10t B. h(t)=t2 C. h(t)=sint D. h(t)=log2t
x | 2 |
x | 2 |
若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=x無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:①方程f(f(x))=x一定沒(méi)有實(shí)數(shù)根;
②若a>0,則不等式f(f(x))>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存在實(shí)數(shù)x0,使f(f(x0))>x0;
④若a+b+c=0,則不等式f(f(x))<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒(méi)有交點(diǎn).
其中正確的結(jié)論是 (寫(xiě)出所有正確結(jié)論的編號(hào)).
1.A 2.B 3.C 4.C 5.A 6.C 7.D 8.D 9.A 10.C
11.80 12.30 13.c 14. 15. .
三、解答題
16.解:(1)(ka+b)2=3(a-kb)2 k2++2ka?b=3(1+k2-2ka?b)
∴a?b= 當(dāng)k=1時(shí)取等號(hào). (6分)
(2)a?b=
∴時(shí),a?b=取最大值1. (12分)
17.解:(1)由已知有xn+1-1=2(xn-1)
∴{xn-1}是以1為首項(xiàng)以2為公比的等比數(shù)列,又x1=2.
∴xn-1=2n-1 ∴xn=1+2n-1(n∈N*) (6分)
(2)由
又當(dāng)n∈N*時(shí),xn≥2故點(diǎn)(xn,yn)在射線x+y=3(xn≥2)上。 (12分)
18.解:(1)記乙勝為事件A,則P(A)=
|