9.下列命題中:①等腰△ABC中若一腰的兩個(gè)端點(diǎn) 坐標(biāo)分別為A.A為頂點(diǎn).則另一腰的一個(gè)端點(diǎn)C的軌跡方程為 查看更多

 

題目列表(包括答案和解析)

10、等腰三角形ABC,若一腰的兩個(gè)端點(diǎn)坐標(biāo)分別是A(4,2),B(-2,0),A頂點(diǎn),則另一腰的一個(gè)端點(diǎn)C的軌跡方程是( 。

查看答案和解析>>

等腰三角形ABC,若一腰的兩個(gè)端點(diǎn)坐標(biāo)分別是A(4,2),B(-2,0),A頂點(diǎn),則另一腰的一個(gè)端點(diǎn)C的軌跡方程是( )
A.x2+y2-8x-4y=0
B.x2+y2-8x-4y-20=0(x≠10,x≠-2)
C.x2+y2+8x+4y-20=0(x≠-2,x≠10)
D.x2+y2-8x-4y+20=0(x≠-2,x≠10)

查看答案和解析>>

等腰三角形ABC,若一腰的兩個(gè)端點(diǎn)坐標(biāo)分別是A(4,2),B(-2,0),A頂點(diǎn),則另一腰的一個(gè)端點(diǎn)C的軌跡方程是( )
A.x2+y2-8x-4y=0
B.x2+y2-8x-4y-20=0(x≠10,x≠-2)
C.x2+y2+8x+4y-20=0(x≠-2,x≠10)
D.x2+y2-8x-4y+20=0(x≠-2,x≠10)

查看答案和解析>>

等腰三角形ABC,若一腰的兩個(gè)端點(diǎn)坐標(biāo)分別是A(4,2),B(-2,0),A頂點(diǎn),則另一腰的一個(gè)端點(diǎn)C的軌跡方程是( 。
A.x2+y2-8x-4y=0
B.x2+y2-8x-4y-20=0(x≠10,x≠-2)
C.x2+y2+8x+4y-20=0(x≠-2,x≠10)
D.x2+y2-8x-4y+20=0(x≠-2,x≠10)

查看答案和解析>>

等腰三角形ABC,若一腰的兩個(gè)端點(diǎn)坐標(biāo)分別是A(4,2),B(-2,0),A頂點(diǎn),則另一腰的一個(gè)端點(diǎn)C的軌跡方程是


  1. A.
    x2+y2-8x-4y=0
  2. B.
    x2+y2-8x-4y-20=0(x≠10,x≠-2)
  3. C.
    x2+y2+8x+4y-20=0(x≠-2,x≠10)
  4. D.
    x2+y2-8x-4y+20=0(x≠-2,x≠10)

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答題

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  當(dāng)k=1時(shí)取等號(hào).                                (6分)

   (2)a?b=

       

        ∴時(shí),a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1為首項(xiàng)以2為公比的等比數(shù)列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又當(dāng)nN*時(shí),xn≥2故點(diǎn)(xn,yn)在射線x+y=3(xn≥2)上。                (12分)

18.解:(1)記乙勝為事件A,則PA)=

   (2)解法一:由題意:(xy)=(1,4)或(1,3)

或(1,2)或(1,1)或(2,3)或(2,2)

或(2,1)或(3,2)或(3,1)或(4,1)。

故當(dāng)x=1,y=4時(shí),x+2y取最大值9,即x=1,

y=4時(shí)乙獲勝的概率最大為.(12分)

解法二:令t=x+2y,,(x,y)取值如圖所示,由

線性規(guī)劃知識(shí)知x=1,y=4時(shí),t最大,

x=1,y=4,乙獲勝的概率最大為.                                                   (12分)

19.解(1)設(shè)正三棱柱的側(cè)棱長(zhǎng)為.取中點(diǎn),連

是正三角形,

又底面側(cè)面,且交線為

側(cè)面.……3分

,則直線與側(cè)面所成的角為

中,,解得

此正三棱柱的側(cè)棱長(zhǎng)為.                       ……5分

(2)過(guò),連,

側(cè)面為二面角的平面角.…7分

中,

,

中,

故二面角的大小為.         ……9分

(3)解法1:由(2)可知,平面,平面平面,且交線為,

過(guò),則平面.……11分

中,

中點(diǎn),點(diǎn)到平面的距離為.  ………… 13

20.解:

 

21.解:(1)

,故橢圓Qn的焦距2cn≥1.                                                            (4分)

   (2)(i)設(shè)Pn(xn,yn),則

        

 

 

 

 

 

 


同步練習(xí)冊(cè)答案