兩點(diǎn)的球的大圓有且僅有一個(gè).④(x2+x)7的展開式的第3項(xiàng)的二項(xiàng)式系數(shù)是.其中正確 命題的個(gè)數(shù)是 A.0 B.1 C.2 D.3 查看更多

 

題目列表(包括答案和解析)

球面上有A、B兩點(diǎn),經(jīng)過A、B兩點(diǎn)的球的大圓有()


  1. A.
    有且只有一個(gè)
  2. B.
    無數(shù)個(gè)
  3. C.
    一個(gè)或無數(shù)個(gè)
  4. D.
    一個(gè)或沒有

查看答案和解析>>

球面上有七個(gè)點(diǎn),其中四個(gè)點(diǎn)在同一個(gè)大圓上,其余無三點(diǎn)共一個(gè)大圓,也無兩點(diǎn)與球心共線,那么經(jīng)過球心與球面上的任意兩點(diǎn)可作球的大圓有( 。

查看答案和解析>>

6、A、B為球面上相異兩點(diǎn),則通過A、B兩點(diǎn)可作球的大圓有(  )

查看答案和解析>>

17、下列四個(gè)命題中真命題是( 。

查看答案和解析>>

給出下列命題:①有一條側(cè)棱與底面兩邊垂直的棱柱是直棱柱;②底面為正多邊形的棱柱為正棱柱;③頂點(diǎn)在底面上的射影到底面各頂點(diǎn)的距離相等的棱維是正棱錐;④A、B為球面上相異的兩點(diǎn),則通過A、B的大圓有且只有一個(gè).其中正確命題的個(gè)數(shù)是                                              ( 。

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答題

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  當(dāng)k=1時(shí)取等號.                                (6分)

   (2)a?b=

       

        ∴時(shí),a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1為首項(xiàng)以2為公比的等比數(shù)列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又當(dāng)nN*時(shí),xn≥2故點(diǎn)(xn,yn)在射線x+y=3(xn≥2)上。                (12分)

18.解:(1)記乙勝為事件A,則PA)=

    1.    (2)解法一:由題意:(xy)=(1,4)或(1,3)

      或(1,2)或(1,1)或(2,3)或(2,2)

      或(2,1)或(3,2)或(3,1)或(4,1)。

      故當(dāng)x=1,y=4時(shí),x+2y取最大值9,即x=1,

      y=4時(shí)乙獲勝的概率最大為.(12分)

      解法二:令t=x+2y,,(x,y)取值如圖所示,由

      線性規(guī)劃知識知x=1,y=4時(shí),t最大,

      x=1,y=4,乙獲勝的概率最大為.                                                   (12分)

      19.解(1)設(shè)正三棱柱的側(cè)棱長為.取中點(diǎn),連

      是正三角形,

      又底面側(cè)面,且交線為

      側(cè)面.……3分

      ,則直線與側(cè)面所成的角為

      中,,解得

      此正三棱柱的側(cè)棱長為.                       ……5分

      (2)過,連,

      側(cè)面為二面角的平面角.…7分

      中,,

      ,

      中,

      故二面角的大小為.         ……9分

      (3)解法1:由(2)可知,平面,平面平面,且交線為

      ,則平面.……11分

      中,

      中點(diǎn),點(diǎn)到平面的距離為.  ………… 13

      20.解:

       

      21.解:(1)

      ,故橢圓Qn的焦距2cn≥1.                                                            (4分)

         (2)(i)設(shè)Pn(xn,yn),則

              

       

       

       

       

       

       


      同步練習(xí)冊答案